Fusion ring example
Jump to navigation
Jump to search
example
- $\mathfrak{g}=\mathfrak{sl}_2$
- let $k=3$ be the level for the fusion ring $C_{\mathfrak{g},k}$
- $\operatorname{Rep}(\mathfrak{g})$ has basis $\{V_0,V_1,V_2,V_3,V_4,\cdots \}$ with product
$$ V_{m}{\otimes}V_{n}\cong V_{|m-n|}\oplus V_{|m-n|+2}\oplus \cdots \oplus V_{m+n} $$
- $C_{\mathfrak{g},k}$ has basis $\{V_0,V_1,V_2,V_3\}$ with product
$$ V_{m}{\otimes}V_{n}\cong V_{|m-n|}\oplus V_{|m-n|+2}\oplus \cdots \oplus V_{\operatorname{min}(2k-(m+n),m+n)} $$
- $(V_1)^{\otimes l}$ for $l\geq 0$ in each ring :
$$ \begin{array}{c|c|c}
l & \operatorname{Rep}(\mathfrak{g}) & C_{\mathfrak{g},k} \\
\hline
0 & V_0 & V_0 \\ 1 & V_1 & V_1 \\ 2 & V_0\oplus V_2 & V_0\oplus V_2 \\ 3 & 2 V_1\oplus V_3 & 2 V_1\oplus V_3 \\ 4 & 2 V_0\oplus 3 V_2\oplus V_4 & 2 V_0\oplus 3 V_2 \\ 5 & 5 V_1\oplus 4 V_3\oplus V_5 & 5 V_1\oplus 3 V_3 \\ 6 & 5 V_0\oplus 9 V_2\oplus 5 V_4\oplus V_6 & 5 V_0\oplus 8 V_2 \\
\end{array} $$