Seminar : Affine Lie Algebras

From chlee
Revision as of 01:08, 6 March 2015 by Chlee (talk | contribs)
Jump to navigation Jump to search

This is the page for the seminar on QFT at the University of Queensland. We focus on Affine Lie Algebras for Semester 1, 2015. The main goal is to understand various aspects of the theory of affine Lie algebras in mathematics and physics.

  • when : Thursdays 3-4:30 pm
  • where : Priestly Building Seminar Room 67-442


topics

References are given for each topic. But we won't necessarily follow them strictly or cover them all.

introduction (12/3/2015, Chul-hee Lee)

  • overview

Kac-Moody algebras

  • chapter 1&4 of [Kac 1994]
  • chapter 14&15 of [Carter 2005]

affine Lie algebras as central extensions of loop algebras

  • chapter 7 of [Kac 1994]
  • chapter 18 of [Carter 2005]

Sugawara construction of Virasoro algebra

  • chapter 12 of [Kac 1994]
  • chapter 15 of [FMS 1999]
  • Bardakci, K., and M. B. Halpern. 2009. ‘The Dual Quark Models’. arXiv:0907.2705 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/0907.2705.

integrable highest weight representations of affine Lie algebras

  • chapter 12 of [Kac 1994]
  • chapter 3 of [Wakimoto 2001]
  • chapter 20 of [Carter 2005]

Wess-Zumino-Witten model

  • chapter 15 of [FMS 1999]
  • Walton, Mark. ‘Affine Kac-Moody Algebras and the Wess-Zumino-Witten Model’. arXiv:hep-th/9911187, 23 November 1999. http://arxiv.org/abs/hep-th/9911187.

modular transformations of characters of affine Lie algebras

  • chapter 4 of [Wakimoto 2001]
  • chapter 13 of [Kac 1994]
  • Macdonald, I. G. 1981. “Affine Lie Algebras and Modular Forms.” In Séminaire Bourbaki Vol. 1980/81 Exposés 561–578, 258–276. Lecture Notes in Mathematics 901. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0097202.

fusion rules and Verlinde formula

  • chapter 5 of [Wakimoto 2001]
  • chapter 16 of [FMS 1999]
  • Gannon, Terry. 2005. “Modular Data: The Algebraic Combinatorics of Conformal Field Theory.” Journal of Algebraic Combinatorics. An International Journal 22 (2): 211–250. doi:10.1007/s10801-005-2514-2.
  • Feingold, Alex J. 2004. ‘Fusion Rules for Affine Kac-Moody Algebras’. In Kac-Moody Lie Algebras and Related Topics, 343:53–96. Contemp. Math. Amer. Math. Soc., Providence, RI. http://arxiv.org/abs/math/0212387
  • Fuchs, J. 1994. ‘Fusion Rules in Conformal Field Theory’. Fortschritte Der Physik/Progress of Physics 42 (1): 1–48. doi:10.1002/prop.2190420102. http://arxiv.org/abs/hep-th/9306162
  • Verlinde, Erik. 1988. “Fusion Rules and Modular Transformations in 2D Conformal Field Theory.” Nuclear Physics B 300: 360–376. doi:10.1016/0550-3213(88)90603-7.

vertex operator constructions of basic representations

  • chapter 14 of [Kac 1994]
  • chapter 20 of [Carter 2005]
  • Frenkel, I. B., and V. G. Kac. “Basic Representations of Affine Lie Algebras and Dual Resonance Models.” Inventiones Mathematicae 62, no. 1 (February 1, 1980): 23–66. doi:10.1007/BF01391662.
  • Lepowsky, James, and Robert Lee Wilson. “Construction of the Affine Lie algebra $A_1^{(1)}$.” Communications in Mathematical Physics 62, no. 1 (1 August 1978): 43–53. doi:10.1007/BF01940329.

links


references

<HarvardReferences>

  • [*Kac 1994] Kac, Victor G. 1994. Infinite-Dimensional Lie Algebras. Cambridge University Press.
  • [*FMS 1999] Francesco, Philippe, Pierre Mathieu, and David Senechal. 1999. Conformal Field Theory. Corrected edition. New York: Springer.
  • [*Wakimoto 2001] Wakimoto, Minoru. Infinite-Dimensional Lie Algebras. Vol. 195. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2001. http://www.ams.org/mathscinet-getitem?mr=1793723.
  • [*Carter 2005] Carter, R. W. 2005. Lie Algebras of Finite and Affine Type. Vol. 96. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. http://www.ams.org/mathscinet-getitem?mr=2188930.

</HarvardReferences>

reading for fun

  • Helgason, Sigurdur. ‘A Centennial: Wilhelm Killing and the Exceptional Groups’. The Mathematical Intelligencer 12 (3): 54–57. doi:10.1007/BF03024019.
  • Coleman, A. J. ‘The Greatest Mathematical Paper of All Time’. The Mathematical Intelligencer 11 (3): 29–38. doi:10.1007/BF03025189.
  • Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:10.1007/BF03025312.
  • Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf

advanced

  • Goddard, Peter, and David Olive, eds. Kac-Moody and Virasoro Algebras. Vol. 3. Advanced Series in Mathematical Physics. World Scientific Publishing Co., Singapore, 1988. http://www.ams.org/mathscinet-getitem?mr=966668.
  • Frenkel, Igor, James Lepowsky, and Arne Meurman. Vertex Operator Algebras and the Monster. Academic Press, 1989.