Kirillov-Reshetikhin modules and fusion rings from CFT

Chul-hee Lee

MPI

DIAS, 26/9/2013

Q-system: definition

Definition

Let X be a Dynkin diagram of type ADE and I be the set of its vertices. For a family of variables $\{Q_m^{(a)}|a\in I, m\in\mathbb{Z}_{\geq 0}\}$ in a commutative ring (like \mathbb{C}), consider recurrences given by

$$\left(Q_{m}^{(a)}\right)^{2} = \prod_{b \in I, b \sim a} Q_{m}^{(b)} + Q_{m-1}^{(a)} Q_{m+1}^{(a)}$$

Q-system : definition

Definition

Let X be a Dynkin diagram of type ADE and I be the set of its vertices. For a family of variables $\{Q_m^{(a)}|a\in I, m\in\mathbb{Z}_{\geq 0}\}$ in a commutative ring (like \mathbb{C}), consider recurrences given by

$$\left(Q_{m}^{(a)}\right)^{2}=\prod_{b\in I,b\sim a}Q_{m}^{(b)}+Q_{m-1}^{(a)}Q_{m+1}^{(a)}$$

We call this system the unrestricted Q-system of type X. We use boundary conditions $Q_0^{(a)}=1$ for all $a\in I$.

Q-system : definition

Definition

Let X be a Dynkin diagram of type ADE and I be the set of its vertices. For a family of variables $\{Q_m^{(a)}|a\in I, m\in\mathbb{Z}_{\geq 0}\}$ in a commutative ring (like \mathbb{C}), consider recurrences given by

$$\left(Q_{m}^{(a)}\right)^{2}=\prod_{b\in I,b\sim a}Q_{m}^{(b)}+Q_{m-1}^{(a)}Q_{m+1}^{(a)}$$

We call this system the unrestricted Q-system of type X. We use boundary conditions $Q_0^{(a)}=1$ for all $a\in I$.

Q-system : definition

Definition

Let X be a Dynkin diagram of type ADE and I be the set of its vertices. For a family of variables $\{Q_m^{(a)}|a\in I, m\in\mathbb{Z}_{\geq 0}\}$ in a commutative ring (like \mathbb{C}), consider recurrences given by

$$\left(Q_{m}^{(a)}\right)^{2} = \prod_{b \in I, b \sim a} Q_{m}^{(b)} + Q_{m-1}^{(a)} Q_{m+1}^{(a)}$$

We call this system the unrestricted Q-system of type X. We use boundary conditions $Q_0^{(a)}=1$ for all $a\in I$.

• There is a more general and complicated definition of the Q-system associated to a multiply-laced Dynkin diagram

Dynkin diagram : $ullet_{(1)} - ullet_{(2)} - ullet_{(3)} - ullet_{(4)}$ Use the recursion

$$Q_{m+1}^{(a)} = \frac{\left(Q_m^{(a)}\right)^2 - \prod_{b \sim a} Q_m^{(b)}}{Q_{m-1}^{(a)}}$$

Dynkin diagram : $ullet_{(1)} - ullet_{(2)} - ullet_{(3)} - ullet_{(4)}$ Use the recursion

$$Q_{m+1}^{(a)} = \frac{\left(Q_m^{(a)}\right)^2 - \prod_{b \sim a} Q_m^{(b)}}{Q_{m-1}^{(a)}}$$

$$\frac{m \mid a \mid 1 \quad 2 \quad 3 \quad 4}{0 \quad 1 \quad 1 \quad 1 \quad 1}$$

$$1 \quad Q_1^{(1)} \quad Q_1^{(2)} \quad Q_1^{(3)} \quad Q_1^{(4)}$$

Dynkin diagram : $\bullet_{(1)} - \bullet_{(2)} - \bullet_{(3)} - \bullet_{(4)}$ Use the recursion

$$\begin{split} Q_{m+1}^{(a)} &= \frac{\left(Q_m^{(a)}\right)^2 - \prod_{b \sim a} Q_m^{(b)}}{Q_{m-1}^{(a)}} \\ &\frac{m \backslash a \mid 1 \quad 2 \quad 3 \quad 4}{0 \quad 1 \quad 1 \quad 1 \quad 1} \\ 1 \quad Q_1^{(1)} \quad Q_1^{(2)} \quad Q_1^{(3)} \quad Q_1^{(4)} \\ 2 \quad Q_2^{(1)} \quad Q_2^{(2)} \quad Q_2^{(3)} \quad Q_2^{(4)} \end{split}$$

Dynkin diagram : $ullet_{(1)} - ullet_{(2)} - ullet_{(3)} - ullet_{(4)}$ Use the recursion

$$Q_{m+1}^{(a)} = \frac{\begin{pmatrix} Q_m' \end{pmatrix} - \prod_{b \sim a} Q_m'}{Q_{m-1}^{(a)}}$$

$$\frac{m \backslash a}{0} \frac{1}{1} \frac{2}{1} \frac{3}{1} \frac{4}{1}$$

$$\frac{1}{1} Q_1^{(1)} Q_1^{(2)} Q_1^{(3)} Q_1^{(4)}$$

$$\frac{1}{2} Q_2^{(1)} Q_2^{(2)} Q_2^{(3)} Q_2^{(4)}$$

$$\frac{1}{3} Q_3^{(1)} Q_3^{(2)} Q_3^{(3)} Q_3^{(4)}$$

$$\frac{1}{3} Q_3^{(1)} Q_3^{(2)} Q_3^{(2)} Q_3^{(3)} Q_3^{(4)}$$

$$\frac{1}{3} Q_3^{(1)} Q_3^{(2)} Q_3^{(2)} Q_3^{(3)} Q_3^{(4)}$$

$$\frac{1}{3} Q_3^{(1)} Q_3^{(2)} Q_3^{(2)} Q_3^{(3)} Q_3^{(4)}$$

Dynkin diagram : $\bullet_{(1)} - \bullet_{(2)} - \bullet_{(3)} - \bullet_{(4)}$ Use the recursion

$$\begin{split} Q_{m+1}^{(a)} &= \frac{\left(Q_m^{(a)}\right)^2 - \prod_{b \sim a} Q_m^{(b)}}{Q_{m-1}^{(a)}} \\ \frac{m \backslash a}{0} & 1 & 2 & 3 & 4 \\ \hline 0 & 1 & 1 & 1 & 1 \\ 1 & Q_1^{(1)} & Q_1^{(2)} & Q_1^{(3)} & Q_1^{(4)} \\ 2 & Q_2^{(1)} & Q_2^{(2)} & Q_2^{(3)} & Q_2^{(4)} \\ 3 & Q_3^{(1)} & Q_3^{(2)} & Q_3^{(3)} & Q_3^{(4)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{split}$$

• Question : Fix a positive integer $k \ge 1$ (level). How can we find $(Q_1^{(a)})_{a \in I}$ such that $Q_k^{(a)} = 1$ for all $a \in I$?

Definition

For variables $\left(Q_m^{(a)}\right)$ with $0 \leq m \leq k$ and $a \in I$, consider a system of equations

$$\begin{cases} Q_0^{(a)} = 1 & a \in I \\ \left(Q_m^{(a)}\right)^2 = \prod_{b \sim a} \left(Q_m^{(b)}\right) + Q_{m-1}^{(a)} Q_{m+1}^{(a)} & 1 \le m \le k-1, a \in I \\ Q_k^{(a)} = 1 & a \in I \end{cases}$$

Definition

For variables $\left(Q_m^{(a)}\right)$ with $0 \leq m \leq k$ and $a \in I$, consider a system of equations

$$\begin{cases} Q_0^{(a)} = 1 & a \in I \\ \left(Q_m^{(a)}\right)^2 = \prod_{b \sim a} \left(Q_m^{(b)}\right) + Q_{m-1}^{(a)} Q_{m+1}^{(a)} & 1 \le m \le k-1, a \in I \\ Q_k^{(a)} = 1 & a \in I \end{cases}$$

We call this system of equations the level k restricted Q-system.

Definition

For variables $\left(Q_m^{(a)}\right)$ with $0 \leq m \leq k$ and $a \in I$, consider a system of equations

$$\begin{cases} Q_0^{(a)} = 1 & a \in I \\ \left(Q_m^{(a)}\right)^2 = \prod_{b \sim a} \left(Q_m^{(b)}\right) + Q_{m-1}^{(a)} Q_{m+1}^{(a)} & 1 \leq m \leq k-1, a \in I \\ Q_k^{(a)} = 1 & a \in I \end{cases}$$

We call this system of equations the level k restricted Q-system.

• It is known that there exists a unique positive solution of the level k restricted Q-system over \mathbb{C} .

Definition

For variables $\left(Q_m^{(a)}\right)$ with $0 \leq m \leq k$ and $a \in I$, consider a system of equations

$$\begin{cases} Q_0^{(a)} = 1 & a \in I \\ \left(Q_m^{(a)}\right)^2 = \prod_{b \sim a} \left(Q_m^{(b)}\right) + Q_{m-1}^{(a)} Q_{m+1}^{(a)} & 1 \leq m \leq k-1, a \in I \\ Q_k^{(a)} = 1 & a \in I \end{cases}$$

We call this system of equations the level k restricted Q-system.

- It is known that there exists a unique positive solution of the level k restricted Q-system over \mathbb{C} .
- Sometimes, we replace the last condition with $Q_{k+1}^{(a)} = 0$ for each $a \in I$.

The Rogers dilogarithm function is defined by

$$L(x) = -\frac{1}{2} \int_0^x \frac{\log(1-y)}{y} + \frac{\log(y)}{1-y} dy$$

for $x \in (0,1)$. We set L(0) = 0 and $L(1) = \pi^2/6$ so that L is continuous on [0,1].

The Rogers dilogarithm function is defined by

$$L(x) = -\frac{1}{2} \int_0^x \frac{\log(1-y)}{y} + \frac{\log(y)}{1-y} dy$$

for $x \in (0,1)$. We set L(0) = 0 and $L(1) = \pi^2/6$ so that L is continuous on [0,1].

many functional identities are satisfied. For example,

$$L(x) + L(1 - xy) + L(y) + L(\frac{1 - y}{1 - xy}) + L(\frac{1 - x}{1 - xy}) = \frac{\pi^2}{2} = 3L(1)$$

The Rogers dilogarithm function is defined by

$$L(x) = -\frac{1}{2} \int_0^x \frac{\log(1-y)}{y} + \frac{\log(y)}{1-y} dy$$

for $x \in (0,1)$. We set L(0) = 0 and $L(1) = \pi^2/6$ so that L is continuous on [0,1].

many functional identities are satisfied. For example,

$$L(x) + L(1 - xy) + L(y) + L(\frac{1 - y}{1 - xy}) + L\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{2} = 3L(1)$$

 shows up in many places (e.g. number theory, algebraic K-theory, hyperbolic geometry)

The Rogers dilogarithm function is defined by

$$L(x) = -\frac{1}{2} \int_0^x \frac{\log(1-y)}{y} + \frac{\log(y)}{1-y} dy$$

for $x \in (0,1)$. We set L(0) = 0 and $L(1) = \pi^2/6$ so that L is continuous on [0,1].

many functional identities are satisfied. For example,

$$L(x) + L(1 - xy) + L(y) + L(\frac{1 - y}{1 - xy}) + L\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{2} = 3L(1)$$

- shows up in many places (e.g. number theory, algebraic K-theory, hyperbolic geometry)
- computes central charges for some conformal field theories

an equation from TBA and Y-system

For variables $\{f_m^{(a)}|a\in I, 1\leq m\leq k-1\}$, consider a system of equations given by

$$\sum_{b \in I} \mathcal{C}(X)_{ab} \log(1 - f_m^{(b)}) = \sum_{n=1}^{k-1} \mathcal{C}(A_{k-1})_{mn} \log f_n^{(a)}.$$

an equation from TBA and Y-system

For variables $\{f_m^{(a)}|a\in I, 1\leq m\leq k-1\}$, consider a system of equations given by

$$\sum_{b \in I} \mathcal{C}(X)_{ab} \log(1 - f_m^{(b)}) = \sum_{n=1}^{k-1} \mathcal{C}(A_{k-1})_{mn} \log f_n^{(a)}.$$

Note that $f_m^{(a)}=\frac{Y_m^{(a)}(\infty)}{1+Y_m^{(a)}(\infty)}$ where $\left(Y_m^{(a)}(\infty)\right)$ is a u-independent solution of the Y-system

$$Y_{m}^{(a)}(u-1)Y_{m}^{(a)}(u+1) = \frac{\prod_{b \in I: b \sim a} (1 + Y_{m}^{(b)}(u))}{(1 + Y_{m-1}^{(a)}(u)^{-1})(1 + Y_{m+1}^{(a)}(u)^{-1})}, \quad u \in \mathbb{Z}$$

with the boundary conditions

$$(Y_0^{(a)}(u))^{-1} = (Y_k^{(a)}(u))^{-1} = 0$$

TBA and dilogarithm identities for conformal field theories

Theorem (Bazhanov, Kirillov, Reshetikhin '87, ..., Nakanishi '10)

Let X be a Dynkin diagram of type ADE of rank r and $\mathfrak g$ be the corresponding simple Lie algebra. Let $(f_m^{(a)})$ be the unique positive solution of the above such that $0 < f_m^{(a)} < 1$. Then

$$\frac{6}{\pi^2} \sum_{a \in I} \sum_{m=1}^{k-1} L(f_m^{(a)}) = \frac{k \dim \mathfrak{g}}{h+k} - r = \frac{(k-1)hr}{h+k}$$

where h denotes the Coxeter number of X.

TBA and dilogarithm identities for conformal field theories

Theorem (Bazhanov, Kirillov, Reshetikhin '87, ..., Nakanishi '10)

Let X be a Dynkin diagram of type ADE of rank r and $\mathfrak g$ be the corresponding simple Lie algebra. Let $(f_m^{(a)})$ be the unique positive solution of the above such that $0 < f_m^{(a)} < 1$. Then

$$\frac{6}{\pi^2} \sum_{a \in I} \sum_{m=1}^{k-1} L(f_m^{(a)}) = \frac{k \dim \mathfrak{g}}{h+k} - r = \frac{(k-1)hr}{h+k}$$

where h denotes the Coxeter number of X.

 Originated from the Thermodynamic Bethe ansatz (TBA) calculations for some models in statistical mechanics and had been open for many years

TBA and level restricted Q-system

The unique positive solution of the equations

$$\sum_{b\in I} \mathcal{C}(X)_{ab} \log(1-f_m^{(b)}) = \sum_{n\in I'} \mathcal{C}(A_{k-1})_{mn} \log f_n^{(a)},$$

such that $0 < f_m^{(a)} < 1$ can be constructed from the unique positive solution of level k restricted Q-system :

TBA and level restricted Q-system

The unique positive solution of the equations

$$\sum_{b \in I} C(X)_{ab} \log(1 - f_m^{(b)}) = \sum_{n \in I'} C(A_{k-1})_{mn} \log f_n^{(a)},$$

such that $0 < f_m^{(a)} < 1$ can be constructed from the unique positive solution of level k restricted Q-system :

$$f_m^{(a)} = 1 - rac{Q_{m-1}^{(a)}Q_{m+1}^{(a)}}{(Q_m^{(a)})^2} = rac{\prod_{b \sim a}Q_m^{(b)}}{(Q_m^{(a)})^2}.$$

 Let q be a non-zero complex number which is not a root of unity

- Let q be a non-zero complex number which is not a root of unity
- KR modules form a special class of finite dimensional modules of the quantum affine algebra $U_q(\hat{\mathfrak{g}})$

- Let q be a non-zero complex number which is not a root of unity
- KR modules form a special class of finite dimensional modules of the quantum affine algebra $U_q(\hat{\mathfrak{g}})$
- The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is contained in $U_q(\hat{\mathfrak{g}})$ as a subalgebra

- Let q be a non-zero complex number which is not a root of unity
- KR modules form a special class of finite dimensional modules of the quantum affine algebra $U_q(\hat{\mathfrak{g}})$
- The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is contained in $U_q(\hat{\mathfrak{g}})$ as a subalgebra
- lifting of an irreducible $U_q(\mathfrak{g})$ -module of highest weight $m\omega_a$ to an $U_q(\hat{\mathfrak{g}})$ -module by adding more irreducible $U_q(\mathfrak{g})$ -modules (minimal affinization)

• For given \mathfrak{g} , KR module $W_m^{(a)}(u)$ can be parametrized by $a \in I$, $m \in \mathbb{Z}_{\geq 0}$, and $u \in \mathbb{C}^{\times}$ spectral parameter

- For given \mathfrak{g} , KR module $W_m^{(a)}(u)$ can be parametrized by $a \in I$, $m \in \mathbb{Z}_{\geq 0}$, and $u \in \mathbb{C}^{\times}$ spectral parameter
- From $U_q(\hat{\mathfrak{g}})$ -module $W_m^{(a)}(u)$, we can get a finite dimensional $U_q(\mathfrak{g})$ -module res $W_m^{(a)}(u)$ by restriction

- For given \mathfrak{g} , KR module $W_m^{(a)}(u)$ can be parametrized by $a \in I$, $m \in \mathbb{Z}_{\geq 0}$, and $u \in \mathbb{C}^{\times}$ spectral parameter
- From $U_q(\hat{\mathfrak{g}})$ -module $W_m^{(a)}(u)$, we can get a finite dimensional $U_q(\mathfrak{g})$ -module res $W_m^{(a)}(u)$ by restriction
- Let $Q_m^{(a)}$ be the classical character of $\operatorname{res} W_m^{(a)}(u)$ and then $Q_m^{(a)}$ can be written as $\sum_{\lambda \in P_+} Z(a,m,\lambda) \chi_\lambda$ for some $Z(a,m,\lambda) \in \mathbb{Z}_{\geq 0}$ where χ_λ is the character of a highest weight representation

- For given \mathfrak{g} , KR module $W_m^{(a)}(u)$ can be parametrized by $a \in I$, $m \in \mathbb{Z}_{\geq 0}$, and $u \in \mathbb{C}^{\times}$ spectral parameter
- From $U_q(\hat{\mathfrak{g}})$ -module $W_m^{(a)}(u)$, we can get a finite dimensional $U_q(\mathfrak{g})$ -module res $W_m^{(a)}(u)$ by restriction
- Let $Q_m^{(a)}$ be the classical character of $\operatorname{res} W_m^{(a)}(u)$ and then $Q_m^{(a)}$ can be written as $\sum_{\lambda \in P_+} Z(a,m,\lambda) \chi_\lambda$ for some $Z(a,m,\lambda) \in \mathbb{Z}_{\geq 0}$ where χ_λ is the character of a highest weight representation

Theorem (Nakajima '03, Hernandez '06)

The classical characters $\{Q_m^{(a)}|a\in I, m\in\mathbb{Z}_{\geq 0}\}$ satisfy the unrestricted Q-system :

$$\left(Q_m^{(a)}\right)^2 = \prod_{b \in \mathcal{A}} Q_m^{(a)} + Q_{m-1}^{(a)} Q_{m+1}^{(a)}.$$

character solutions of the unrestricted Q-systems

For
$$X=A_r$$
, we have $Q_m^{(a)}=\chi_{m\omega_a}$ for all $a\in I$ and $m\in\mathbb{Z}_{\geq 0}$

character solutions of the unrestricted Q-systems

For
$$X=A_r$$
, we have $Q_m^{(a)}=\chi_{m\omega_a}$ for all $a\in I$ and $m\in\mathbb{Z}_{\geq 0}$ For $X=D_r$,

$$Q_{m}^{(a)} = \begin{cases} \sum \chi_{k_{a}\omega_{a} + k_{a-2}\omega_{a-2} + \dots + k_{1}\omega_{1}} & 1 \leq a < r - 1, a \equiv 1 \pmod{2}, \\ \sum \chi_{k_{a}\omega_{a} + k_{a-2}\omega_{a-2} + \dots + k_{0}\omega_{0}} & 1 \leq a < r - 1, a \equiv 0 \pmod{2}, \\ \chi_{m\omega_{a}} & a = r - 1, r \end{cases}$$

where $\omega_0=0$ and the summation is over all nonnegative integers satisfying $k_a+k_{a-2}+\cdots+k_1=m$ for a odd and $k_a+k_{a-2}+\cdots+k_0=m$ for a even.

character solutions of the unrestricted Q-systems

For
$$X=A_r$$
, we have $Q_m^{(a)}=\chi_{m\omega_a}$ for all $a\in I$ and $m\in\mathbb{Z}_{\geq 0}$ For $X=D_r$,

$$Q_{m}^{(a)} = \begin{cases} \sum \chi_{k_{a}\omega_{a} + k_{a-2}\omega_{a-2} + \dots + k_{1}\omega_{1}} & 1 \leq a < r - 1, a \equiv 1 \pmod{2}, \\ \sum \chi_{k_{a}\omega_{a} + k_{a-2}\omega_{a-2} + \dots + k_{0}\omega_{0}} & 1 \leq a < r - 1, a \equiv 0 \pmod{2}, \\ \chi_{m\omega_{a}} & a = r - 1, r \end{cases}$$

where $\omega_0=0$ and the summation is over all nonnegative integers satisfying $k_a+k_{a-2}+\cdots+k_1=m$ for a odd and $k_a+k_{a-2}+\cdots+k_0=m$ for a even.

All known for classical types and partially known for exceptional types

using characters to solve the level k restricted Q-system

• We can get a solution of unrestricted Q-system by specializing characters $Q_m^{(a)}$ at elements of \mathfrak{h} or \mathfrak{h}^*

using characters to solve the level k restricted Q-system

- We can get a solution of unrestricted Q-system by specializing characters $Q_m^{(a)}$ at elements of \mathfrak{h} or \mathfrak{h}^*
- For a given level $k \ge 1$, which elements can satisfy $Q_k^{(a)} = 1$ for all $a \in I$?

using characters to solve the level k restricted Q-system

- We can get a solution of unrestricted Q-system by specializing characters $Q_m^{(a)}$ at elements of \mathfrak{h} or \mathfrak{h}^*
- For a given level $k \ge 1$, which elements can satisfy $Q_k^{(a)} = 1$ for all $a \in I$?
- Among those elements which one satisfies $Q_m^{(a)} > 0$ for all $0 \le m \le k$ and $a \in I$?

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)}=Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)}=Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

• (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)}=Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

- (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.
- (unit boundary condition) $\mathcal{D}_k^{(a)} = 1$ for $a \in I$.

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)}=Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

- (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.
- (unit boundary condition) $\mathcal{D}_k^{(a)} = 1$ for $a \in I$.
- (occurrence of 0) $\mathcal{D}_{k+1}^{(a)} = \mathcal{D}_{k+2}^{(a)} = \cdots = \mathcal{D}_{k+h-1}^{(a)} = 0$ for $a \in I$.

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)} = Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

- (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.
- (unit boundary condition) $\mathcal{D}_k^{(\mathsf{a})} = 1$ for $\mathsf{a} \in \mathsf{I}$.
- (occurrence of 0) $\mathcal{D}_{k+1}^{(a)} = \mathcal{D}_{k+2}^{(a)} = \cdots = \mathcal{D}_{k+h-1}^{(a)} = 0$ for $a \in I$.
- (symmetry) $\mathcal{D}_m^{(a)} = \mathcal{D}_{k-m}^{(a)}$ for $1 \leq m \leq k-1$ and $a \in I$.

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)}=Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

- (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.
- (unit boundary condition) $\mathcal{D}_k^{(\mathsf{a})} = 1$ for $\mathsf{a} \in \mathsf{I}$.
- (occurrence of 0) $\mathcal{D}_{k+1}^{(a)} = \mathcal{D}_{k+2}^{(a)} = \cdots = \mathcal{D}_{k+h-1}^{(a)} = 0$ for $a \in I$.
- (symmetry) $\mathcal{D}_m^{(a)} = \mathcal{D}_{k-m}^{(a)}$ for $1 \leq m \leq k-1$ and $a \in I$.
- (unimodality) $\mathcal{D}_{m-1}^{(a)} < \mathcal{D}_m^{(a)}$ holds true for $1 \leq m \leq \lfloor \frac{k}{2} \rfloor$ and $a \in I$ where $\lfloor x \rfloor$ is the floor function.

Let $\rho = \sum_{i=1}^{r} \omega_i \in P$ the Weyl vector.

Conjecture (Kirillov '89, Kuniba-Nakanishi-Suzuki '92)

Let $\mathcal{D}_m^{(a)} = Q_m^{(a)}(\frac{\rho}{h+k})$ for each (a,m). It satisfies the following properties :

- (positivity) $\mathcal{D}_m^{(a)} > 0$ for $0 \le m \le k$ and $a \in I$.
- (unit boundary condition) $\mathcal{D}_k^{(a)} = 1$ for $a \in I$.
- (occurrence of 0) $\mathcal{D}_{k+1}^{(a)} = \mathcal{D}_{k+2}^{(a)} = \cdots = \mathcal{D}_{k+h-1}^{(a)} = 0$ for $a \in I$.
- (symmetry) $\mathcal{D}_m^{(a)} = \mathcal{D}_{k-m}^{(a)}$ for $1 \leq m \leq k-1$ and $a \in I$.
- (unimodality) $\mathcal{D}_{m-1}^{(a)} < \mathcal{D}_m^{(a)}$ holds true for $1 \leq m \leq \lfloor \frac{k}{2} \rfloor$ and $a \in I$ where $\lfloor x \rfloor$ is the floor function.

numerical example : $X = D_5, k = 4$

1.000	1.000	1.000	1.000	1.000
3.732	8.464	14.93	4.732	4.732
5.464	15.93	33.32	7.464	7.464
3.732	8.464	14.93	4.732	4.732
1.000	1.000	1.000	1.000	1.000
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1.000	1.000	1.000	1.000	1.000
3.732	8.464	14.93	4.732	4.732
[:	:	:	:	: _

For a given classical weight $\lambda = \sum_{i=1}^{r} \lambda_i \omega_i \in P$, define its level k affinization $\hat{\lambda} = \sum_{i=0}^{r} \lambda_i \hat{\omega}_i \in \hat{P}_k$ where

 $oldsymbol{\hat{P}} = \mathbb{Z}\hat{\omega}_0 \oplus \cdots \oplus \mathbb{Z}\hat{\omega}_r$ the affine weight lattice

For a given classical weight $\lambda = \sum_{i=1}^{r} \lambda_i \omega_i \in P$, define its level k affinization $\hat{\lambda} = \sum_{i=0}^{r} \lambda_i \hat{\omega}_i \in \hat{P}_k$ where

- $\hat{P}=\mathbb{Z}\hat{\omega}_0\oplus\cdots\oplus\mathbb{Z}\hat{\omega}_r$ the affine weight lattice
- $\hat{P}^k = \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P} | \sum_{i=0}^r c_i \lambda_i = k \}$ where $\theta = \sum_{i=1}^r c_i \alpha_i$ is the highest root and $c_0 = 1$.

For a given classical weight $\lambda = \sum_{i=1}^{r} \lambda_i \omega_i \in P$, define its level k affinization $\hat{\lambda} = \sum_{i=0}^{r} \lambda_i \hat{\omega}_i \in \hat{P}_k$ where

- $\hat{P}=\mathbb{Z}\hat{\omega}_0\oplus\cdots\oplus\mathbb{Z}\hat{\omega}_r$ the affine weight lattice
- $\hat{P}^k = \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P} | \sum_{i=0}^r c_i \lambda_i = k \}$ where $\theta = \sum_{i=1}^r c_i \alpha_i$ is the highest root and $c_0 = 1$.

Example $(X = D_5, k = 4)$

$$\mathcal{D}_4^{(2)} = \chi_0 + \chi_{\omega_2} + \chi_{2\omega_2} + \chi_{3\omega_2} + \chi_{4\omega_2}$$
 evaluated at $\frac{\rho}{h+k}$

For a given classical weight $\lambda = \sum_{i=1}^{r} \lambda_i \omega_i \in P$, define its level k affinization $\hat{\lambda} = \sum_{i=0}^{r} \lambda_i \hat{\omega}_i \in \hat{P}_k$ where

- $\hat{P}=\mathbb{Z}\hat{\omega}_0\oplus\cdots\oplus\mathbb{Z}\hat{\omega}_r$ the affine weight lattice
- $\hat{P}^k = \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P} | \sum_{i=0}^r c_i \lambda_i = k \}$ where $\theta = \sum_{i=1}^r c_i \alpha_i$ is the highest root and $c_0 = 1$.

Example $(X = D_5, k = 4)$

$$\begin{split} \mathcal{D}_{4}^{(2)} &= \chi_{0} + \chi_{\omega_{2}} + \chi_{2\omega_{2}} + \chi_{3\omega_{2}} + \chi_{4\omega_{2}} \text{ evaluated at } \frac{\rho}{h+k} \\ &= \mathcal{D}_{4\hat{\omega}_{0}} + \mathcal{D}_{2\hat{\omega}_{0}+\hat{\omega}_{2}} + \mathcal{D}_{2\hat{\omega}_{2}} + \mathcal{D}_{-2\hat{\omega}_{0}+3\hat{\omega}_{2}} + \mathcal{D}_{-4\hat{\omega}_{0}+4\hat{\omega}_{2}} \\ &= 1? \end{split}$$

For $\hat{\lambda} \in \hat{P}_k$, $\mathcal{D}_{\hat{\lambda}}$ is not positive in general!

quantum dimensions

Definition

For $\hat{\lambda} \in \hat{P}_k$, the quantum dimension or q-dimension of $\hat{\lambda}$ is defined by

$$\mathcal{D}_{\hat{\lambda}} = \chi_{\lambda} \left(\frac{\rho}{h+k} \right) = \frac{\prod_{\alpha > 0} \sin \frac{\pi(\lambda + \rho | \alpha)}{h+k}}{\prod_{\alpha > 0} \sin \frac{\pi(\rho | \alpha)}{h+k}}$$

where $(\cdot|\cdot)$ is the standard bilinear form on P such that $(\theta|\theta)=2$.

ullet The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

• The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

• For a given $\hat{\mu} \in \hat{P}^k$, there exists a unique element $\hat{\lambda} \in \hat{P}^k$ such that $w(\hat{\mu} + \hat{\rho}) = \hat{\lambda} + \hat{\rho}$ for some $w \in \hat{W}$, $(\lambda + \rho | \alpha_a) \ge 0, \forall a \in I$ and $(\lambda + \rho | \theta) \le k + h$.

• The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

- For a given $\hat{\mu} \in \hat{P}^k$, there exists a unique element $\hat{\lambda} \in \hat{P}^k$ such that $w(\hat{\mu} + \hat{\rho}) = \hat{\lambda} + \hat{\rho}$ for some $w \in \hat{W}$, $(\lambda + \rho | \alpha_a) \ge 0, \forall a \in I$ and $(\lambda + \rho | \theta) \le k + h$.
- Let $\hat{P}_+^k := \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P}^k | \lambda_i \ge 0\}$
- For $\hat{\lambda} \in \hat{P}_k^+$, $\mathcal{D}_{\hat{\lambda}} > 0$.

ullet The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

- For a given $\hat{\mu} \in \hat{P}^k$, there exists a unique element $\hat{\lambda} \in \hat{P}^k$ such that $w(\hat{\mu} + \hat{\rho}) = \hat{\lambda} + \hat{\rho}$ for some $w \in \hat{W}$, $(\lambda + \rho | \alpha_a) \ge 0, \forall a \in I$ and $(\lambda + \rho | \theta) \le k + h$.
- Let $\hat{P}_+^k := \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P}^k | \lambda_i \ge 0\}$
- For $\hat{\lambda} \in \hat{P}_k^+$, $\mathcal{D}_{\hat{\lambda}} > 0$.
- $\mathcal{D}_{w \cdot \hat{\lambda}} = (-1)^{\ell(w)} \mathcal{D}_{\hat{\lambda}}$ where $w \cdot \hat{\lambda} := w(\hat{\lambda} + \hat{\rho}) \hat{\rho}$

• The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

- For a given $\hat{\mu} \in \hat{P}^k$, there exists a unique element $\hat{\lambda} \in \hat{P}^k$ such that $w(\hat{\mu} + \hat{\rho}) = \hat{\lambda} + \hat{\rho}$ for some $w \in \hat{W}$, $(\lambda + \rho | \alpha_a) \ge 0, \forall a \in I$ and $(\lambda + \rho | \theta) \le k + h$.
- Let $\hat{P}_+^k := \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P}^k | \lambda_i \ge 0\}$
- For $\hat{\lambda} \in \hat{P}_k^+$, $\mathcal{D}_{\hat{\lambda}} > 0$.
- $\mathcal{D}_{w \cdot \hat{\lambda}} = (-1)^{\ell(w)} \mathcal{D}_{\hat{\lambda}}$ where $w \cdot \hat{\lambda} := w(\hat{\lambda} + \hat{\rho}) \hat{\rho}$
- If $w \in \hat{W}$ is an element of odd signature and $w \cdot \hat{\lambda} = \hat{\lambda}$, then $\mathcal{D}_{\hat{\lambda}} = 0$.

• The affine Weyl group \hat{W} is generated by s_0, s_1, \cdots, s_r and acts on \hat{P} by

$$s_i\hat{\omega}_j=\hat{\omega}_j-\delta_{ij}\hat{\alpha}_i$$

- For a given $\hat{\mu} \in \hat{P}^k$, there exists a unique element $\hat{\lambda} \in \hat{P}^k$ such that $w(\hat{\mu} + \hat{\rho}) = \hat{\lambda} + \hat{\rho}$ for some $w \in \hat{W}$, $(\lambda + \rho | \alpha_a) \ge 0, \forall a \in I$ and $(\lambda + \rho | \theta) \le k + h$.
- Let $\hat{P}_+^k := \{\sum_{i=0}^r \lambda_i \hat{\omega}_i \in \hat{P}^k | \lambda_i \ge 0\}$
- For $\hat{\lambda} \in \hat{P}_k^+$, $\mathcal{D}_{\hat{\lambda}} > 0$.
- $\mathcal{D}_{w \cdot \hat{\lambda}} = (-1)^{\ell(w)} \mathcal{D}_{\hat{\lambda}}$ where $w \cdot \hat{\lambda} := w(\hat{\lambda} + \hat{\rho}) \hat{\rho}$
- If $w \in \hat{W}$ is an element of odd signature and $w \cdot \hat{\lambda} = \hat{\lambda}$, then $\mathcal{D}_{\hat{\lambda}} = 0$.

WZW fusion ring

Definition

The WZW fusion ring is a free \mathbb{Z} -module equipped with the basis $\{V_{\hat{\omega}}|\hat{\omega}\in\hat{P}_+^k\}$ and the product is given by

$$V_{\hat{\lambda}} \cdot V_{\hat{\mu}} = \sum_{\hat{\nu} \in \hat{P}_+^k} N_{\hat{\lambda}\hat{\mu}}^{\hat{\nu}} V_{\hat{\nu}}$$

where the fusion coefficient $N^{\hat{\nu}}_{\hat{\lambda}\hat{\mu}}$ can be computed by the Verlinde formula

$$N_{\hat{\lambda}\hat{\mu}}^{\hat{\nu}} = \sum_{\hat{\omega} \in \hat{P}_{+}^{k}} rac{S_{\hat{\lambda},\hat{\omega}}S_{\hat{\mu},\hat{\omega}}\overline{S_{\hat{\nu},\hat{\omega}}}}{S_{\hat{0},\hat{\omega}}}.$$

- commutative and associative, $V_{k\hat{\omega}_0}$ is the unity
- ullet there exists an involution $V_{\hat{\omega}}^*:=V_{\hat{\omega}^*}$

modular S-matrix and its properties

Definition

For a pair of weights $\hat{\lambda}, \hat{\mu} \in P_k$, we consider the quantity

$$S_{\hat{\lambda},\hat{\mu}} = C \sum_{w \in W} (-1)^{\ell(w)} \exp\left(-rac{2\pi i (w(\lambda +
ho)|\mu +
ho)}{k + h}
ight)$$

where $C=\frac{i^{|\Delta_+|}}{\sqrt{|P/Q^\vee|(k+h)^r}}$ is a normalizing factor independent of $\hat{\lambda}$ and $\hat{\mu}$.

- $S_{\hat{\lambda}\hat{\mu}} = S_{\hat{\mu}\hat{\lambda}}$.
- $ullet S_{w\cdot\hat{\lambda},\hat{\mu}}=(-1)^{\ell(w)}S_{\hat{\lambda},\hat{\mu}} ext{ for } w\in\hat{W}$
- $S_{A\hat{\lambda},\hat{\mu}}=S_{\hat{\lambda},\hat{\mu}}e^{-2\pi i(A\omega_0|\mu)}$ (A : diagram automorphism)
- $S_{\hat{\lambda}^*,\hat{\mu}} = \overline{S_{\hat{\lambda},\hat{\mu}}}$ where $\lambda^* := -w_0\lambda \in P$ and w_0 is the longest element of the finite Weyl group W.

lifting up the KNS conjecture to the fusion ring

Definition

For each (a, m), we define an element $W_m^{(a)}$ (by abusing notation) of the fusion ring by

$$W_m^{(a)} := \sum_{\lambda \in P_+} Z(a, m, \lambda) V_{\hat{\lambda}}.$$

where $Z(a, m, \lambda)$ is the multiplicity of V_{λ} in the KR-module res $W_m^{(a)}(u)$ as a $U_q(\mathfrak{g})$ -module.

lifting up the KNS conjecture to the fusion ring

Definition

For each (a, m), we define an element $W_m^{(a)}$ (by abusing notation) of the fusion ring by

$$W_m^{(a)} := \sum_{\lambda \in P_+} Z(a, m, \lambda) V_{\hat{\lambda}}.$$

where $Z(a, m, \lambda)$ is the multiplicity of V_{λ} in the KR-module res $W_m^{(a)}(u)$ as a $U_q(\mathfrak{g})$ -module.

Q: What will happen if we write $W_m^{(a)}$ as a linear combination of the basis of the fusion ring?

This is easy since the decomposition is simple.

$$\begin{bmatrix} W_0^{(1)} & W_0^{(2)} & W_0^{(3)} \\ W_1^{(1)} & W_1^{(2)} & W_1^{(3)} \\ W_2^{(1)} & W_2^{(2)} & W_2^{(3)} \\ W_3^{(1)} & W_3^{(2)} & W_3^{(3)} \\ W_4^{(1)} & W_4^{(2)} & W_3^{(3)} \\ W_5^{(1)} & W_5^{(2)} & W_5^{(3)} \\ W_6^{(1)} & W_6^{(2)} & W_6^{(3)} \\ W_7^{(1)} & W_7^{(2)} & W_7^{(3)} \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} V_{3\hat{\omega}_0} & V_{3\hat{\omega}_0} & V_{3\hat{\omega}_0} \\ V_{2\hat{\omega}_0 + \hat{\omega}_1} & V_{2\hat{\omega}_0 + \hat{\omega}_2} & V_{2\hat{\omega}_0 + \hat{\omega}_3} \\ V_{2\hat{\omega}_0 + 2\hat{\omega}_1} & V_{\hat{\omega}_0 + 2\hat{\omega}_2} & V_{\hat{\omega}_0 + 2\hat{\omega}_3} \\ V_{3\hat{\omega}_1} & V_{3\hat{\omega}_2} & V_{3\hat{\omega}_3} \\ V_{3\hat{\omega}_1} & V_{3\hat{\omega}_2} & V_{3\hat{\omega}_3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ -V_{3\hat{\omega}_1} & V_{3\hat{\omega}_2} & -V_{3\hat{\omega}_3} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

It's easy for a = 1, 4, 5:

$W_0^{(1)}$	$W_0^{(4)}$	$W_0^{(5)}$
$W_{1}^{(1)}$	$W_{1}^{(4)}$	$W_{1}^{(5)}$
$W_2^{(1)}$	$W_2^{(4)}$	$W_2^{(5)}$
$W_3^{(1)}$	$W_3^{(4)}$	$W_3^{(5)}$
$W_4^{(1)}$	$W_4^{(4)}$	$W_4^{(5)}$
$W_5^{(1)}$	$W_5^{(4)}$	$W_5^{(5)}$
$\begin{vmatrix} vv_5 \\ u_4(1) \end{vmatrix}$	147(4)	14/(5)
$W_6^{(1)}$	$W_6^{(4)}$	$W_6^{(5)}$
$W_7^{(1)}$	$W_7^{(4)}$	$W_7^{(5)}$
$W_8^{(1)}$	$W_8^{(4)}$	$W_8^{(5)}$
$W_{9}^{(1)}$	$W_9^{(4)}$	$W_9^{(5)}$
$W_{10}^{(1)}$	$W_{10}^{(4)}$	$W_{10}^{(5)}$
$W_{11}^{(1)}$	$W_{11}^{(4)}$	$W_{11}^{(5)}$
$W_{12}^{(1)}$	$W_{12}^{(4)}$	$W_{12}^{(5)}$

$V_{4\hat{\omega}_0}$	$V_{4\hat{\omega}_0}$	$V_{4\hat{\omega}_0}$ -
$V_{3\hat{\omega}_0+\hat{\omega}_1}$	$V_{3\hat{\omega}_0+\hat{\omega}_4}$	$V_{3\hat{\omega}_0+\hat{\omega}_5}$
$V_{2\hat{\omega}_0+2\hat{\omega}_1}$	$V_{2\hat{\omega}_0+2\hat{\omega}_4}$	$V_{2\hat{\omega}_0+2\hat{\omega}_5}$
$V_{\hat{\omega}_0+3\hat{\omega}_1}$	$V_{\hat{\omega}_0+3\hat{\omega}_4}$	$V_{\hat{\omega}_0+3\hat{\omega}_5}$
$V_{4\hat{\omega}_1}$	$V_{4\hat{\omega}_4}$	$V_{4\hat{\omega}_5}$
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
$V_{4\hat{\omega}_1}$	$V_{4\hat{\omega}_4}$	$V_{4\hat{\omega}_5}$ _

For a = 2 and $0 \le m \le 4$,

$$\begin{bmatrix} W_0^{(2)} \\ W_1^{(2)} \\ W_2^{(2)} \\ W_3^{(2)} \\ W_4^{(2)} \end{bmatrix} = \begin{bmatrix} V_{4\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{3\hat{\omega}_2 - 2\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2} \end{bmatrix}$$

Let us simplify

$$W_4^{(2)} = V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2}.$$

For a = 2 and $0 \le m \le 4$,

$$\begin{bmatrix} W_0^{(2)} \\ W_1^{(2)} \\ W_2^{(2)} \\ W_3^{(2)} \\ W_4^{(2)} \end{bmatrix} = \begin{bmatrix} V_{4\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{3\hat{\omega}_2 - 2\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2} \end{bmatrix}$$

Let us simplify

$$W_4^{(2)} = V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2}.$$

The shifted action of the affine Weyl group gives

$$s_0 \cdot (-2\hat{\omega}_0 + 3\hat{\omega}_2) = 2\hat{\omega}_2,$$

 $s_0 \cdot (-4\hat{\omega}_0 + 4\hat{\omega}_2) = 2\hat{\omega}_0 + \hat{\omega}_2.$

For a = 2 and $0 \le m \le 4$,

$$\begin{bmatrix} W_0^{(2)} \\ W_1^{(2)} \\ W_2^{(2)} \\ W_3^{(2)} \\ W_4^{(2)} \end{bmatrix} = \begin{bmatrix} V_{4\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{3\hat{\omega}_2 - 2\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2} \end{bmatrix}$$

Let us simplify

$$W_4^{(2)} = V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2}.$$

The shifted action of the affine Weyl group gives

$$s_0 \cdot (-2\hat{\omega}_0 + 3\hat{\omega}_2) = 2\hat{\omega}_2,$$

$$s_0 \cdot (-4\hat{\omega}_0 + 4\hat{\omega}_2) = 2\hat{\omega}_0 + \hat{\omega}_2.$$

Thus
$$W_4^{(2)} = V_{4\hat{\omega}_0}$$
.

Thus, for a = 2 and $0 \le m \le 4$,

$$\begin{bmatrix} W_0^{(2)} \\ W_1^{(2)} \\ W_2^{(2)} \\ W_3^{(2)} \\ W_4^{(2)} \end{bmatrix} = \begin{bmatrix} V_{4\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{3\hat{\omega}_2 - 2\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2} \end{bmatrix}$$

Thus, for a = 2 and $0 \le m \le 4$,

$$\begin{bmatrix} W_0^{(2)} \\ W_1^{(2)} \\ W_2^{(2)} \\ W_3^{(2)} \\ W_4^{(2)} \end{bmatrix} = \begin{bmatrix} V_{4\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{3\hat{\omega}_2 - 2\hat{\omega}_0} \\ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0 + \hat{\omega}_2} + V_{2\hat{\omega}_2} + V_{-2\hat{\omega}_0 + 3\hat{\omega}_2} + V_{-4\hat{\omega}_0 + 4\hat{\omega}_2} \end{bmatrix}$$

$$=egin{bmatrix} V_{4\hat{\omega}_0} \ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0+\hat{\omega}_2} \ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_2} + V_{2\hat{\omega}_0+\hat{\omega}_2} \ V_{4\hat{\omega}_0} + V_{2\hat{\omega}_0+\hat{\omega}_2} \ V_{4\hat{\omega}_0} \end{pmatrix}$$

For a = 2, 3 and $0 \le m \le h + k = 12$,

$$\begin{vmatrix} W_0^{(2)} & W_0^{(3)} \\ W_1^{(2)} & W_1^{(3)} \\ W_2^{(2)} & W_2^{(3)} \\ W_3^{(2)} & W_3^{(3)} \\ W_4^{(2)} & W_4^{(3)} \\ W_5^{(2)} & W_5^{(3)} \\ W_6^{(2)} & W_6^{(3)} \\ W_7^{(2)} & W_7^{(3)} \\ W_7^{(2)} & W_7^{(3)} \\ W_9^{(2)} & W_9^{(3)} \\ W_{10}^{(2)} & W_{10}^{(3)} \\ W_{11}^{(2)} & W_{11}^{(3)} \\ W_{12}^{(2)} & W_{12}^{(3)} \\ \end{bmatrix}$$

boundary of Q-system

Lemma

Let $(\tau_a)_{a\in I}$ be as follows:

	$ au_{a}$
A_r	$\hat{\omega}_{a}$
	$ig(\hat{\omega}_1 \textit{if } 1 \leq a \leq r-2 \; \textit{and } a \equiv 1 \; (mod \; 2)$
D_r	$\begin{cases} \hat{\omega}_1 & \text{if } 1 \leq a \leq r-2 \text{ and } a \equiv 1 \pmod{2} \\ \hat{\omega}_0 & \text{if } 1 \leq a \leq r-2 \text{ and } a \equiv 0 \pmod{2} \\ \hat{\omega}_a & \text{if } a = r-1 \text{ or } a = r \end{cases}$
	$\int \hat{\omega}_{a} ext{if } a = r - 1 \ ext{or } a = r$
:	<u>:</u>

Then $(V_{k\tau_a})_{a\in I}$ satisfies the system of equations

$$\left(Q^{(a)}\right)^2 = \prod_{b \sim a} Q^{(b)}, \quad a \in I.$$

main theorem : lifting of the KNS conjecture

Theorem (L '13)

For each $a \in I$, let us define $R_m^{(a)}$ in the fusion ring by

$$R_m^{(a)} = \begin{cases} W_m^{(a)} & 0 \le m \le \lfloor \frac{k}{2} \rfloor \\ V_{k\tau_a}(W_{k-m}^{(a)*}) & \lfloor \frac{k+1}{2} \rfloor \le m \le k \end{cases}$$

and $R_{-1}^{(a)} = R_{k+1}^{(a)} = 0$. Then $\left(R_m^{(a)}\right)$ is a positive solution of the level k restricted Q-system in the fusion ring.

main theorem : lifting of the KNS conjecture

Theorem (L '13)

For each $a \in I$, let us define $R_m^{(a)}$ in the fusion ring by

$$R_m^{(a)} = \begin{cases} W_m^{(a)} & 0 \le m \le \lfloor \frac{k}{2} \rfloor \\ V_{k\tau_a}(W_{k-m}^{(a)*}) & \lfloor \frac{k+1}{2} \rfloor \le m \le k \end{cases}$$

and $R_{-1}^{(a)} = R_{k+1}^{(a)} = 0$. Then $\left(R_m^{(a)}\right)$ is a positive solution of the level k restricted Q-system in the fusion ring.

this holds for all classical types.

main theorem : lifting of the KNS conjecture

Theorem (L '13)

For each $a \in I$, let us define $R_m^{(a)}$ in the fusion ring by

$$R_m^{(a)} = \begin{cases} W_m^{(a)} & 0 \le m \le \lfloor \frac{k}{2} \rfloor \\ V_{k\tau_a}(W_{k-m}^{(a)*}) & \lfloor \frac{k+1}{2} \rfloor \le m \le k \end{cases}$$

and $R_{-1}^{(a)} = R_{k+1}^{(a)} = 0$. Then $\left(R_m^{(a)}\right)$ is a positive solution of the level k restricted Q-system in the fusion ring.

- this holds for all classical types.
- the KNS conjecture follows as a corollary (positivity, symmetry, unit boundary condition, ...)

problems: positivity and periodicity

Conjecture

For $a \in I$, let τ_a as before and $\sigma_a = e^{-2\pi i (\tau_a | \rho)}$. The following properties hold :

- $W_k^{(a)} = V_{k\tau_a},$
- $W_{k+1}^{(a)} = W_{k+2}^{(a)} = \cdots = W_{(k+h^{\vee})-1}^{(a)} = 0,$

completely verified only for type A_r

ullet Study $\mathsf{Rep}(U_q(\hat{\mathfrak{g}})) o \mathsf{Rep}(U_q(\mathfrak{g})) o \mathsf{Fus}_k(\hat{\mathfrak{g}})$ for q generic

- ullet Study $\mathsf{Rep}(U_q(\hat{\mathfrak{g}})) o \mathsf{Rep}(U_q(\mathfrak{g})) o \mathsf{Fus}_k(\hat{\mathfrak{g}})$ for q generic
- Not much known about Kirillov-Reshetikhin modules or $\operatorname{Rep}(U_q(\hat{\mathfrak{g}}))$ for q roots of unity

- Study $\operatorname{\mathsf{Rep}}(U_q(\hat{\mathfrak{g}})) o \operatorname{\mathsf{Rep}}(U_q(\mathfrak{g})) o \operatorname{\mathsf{Fus}}_k(\hat{\mathfrak{g}})$ for q generic
- Not much known about Kirillov-Reshetikhin modules or $\operatorname{Rep}(U_q(\hat{\mathfrak{g}}))$ for q roots of unity
- Fermionic formula for fusion ring (for generic q, KR modules give fermionic formulas for \mathfrak{g})

- Study $\operatorname{\mathsf{Rep}}(U_q(\hat{\mathfrak{g}})) o \operatorname{\mathsf{Rep}}(U_q(\mathfrak{g})) o \operatorname{\mathsf{Fus}}_k(\hat{\mathfrak{g}})$ for q generic
- Not much known about Kirillov-Reshetikhin modules or $\operatorname{Rep}(U_q(\hat{\mathfrak{g}}))$ for q roots of unity
- Fermionic formula for fusion ring (for generic q, KR modules give fermionic formulas for \mathfrak{g})
- what can we do for

$$z_{ii'}^2 = \prod_{j \in I} z_{ji'}^{\mathcal{I}(X)_{ij}} + \prod_{j' \in I'} z_{ij'}^{\mathcal{I}(X')_{i'j'}}$$

for (X, X') pair of Cartan matrices? (Q-system corresponds to (X, A_{k-1}))

- Study $\operatorname{\mathsf{Rep}}(U_q(\hat{\mathfrak{g}})) o \operatorname{\mathsf{Rep}}(U_q(\mathfrak{g})) o \operatorname{\mathsf{Fus}}_k(\hat{\mathfrak{g}})$ for q generic
- Not much known about Kirillov-Reshetikhin modules or $\operatorname{Rep}(U_q(\hat{\mathfrak{g}}))$ for q roots of unity
- Fermionic formula for fusion ring (for generic q, KR modules give fermionic formulas for \mathfrak{g})
- what can we do for

$$z_{ii'}^2 = \prod_{j \in I} z_{ji'}^{\mathcal{I}(X)_{ij}} + \prod_{j' \in I'} z_{ij'}^{\mathcal{I}(X')_{i'j'}}$$

for (X, X') pair of Cartan matrices? (Q-system corresponds to (X, A_{k-1}))

Thank you!