
HARDER’S CONJECTURE AND MIYAWAKI LIFT
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Abstract. Let k, j and n be positive integers such that k is odd, and both j and n are
even, satisfying j ≡ n mod 4. Let f and g be primitive forms of weight 2k + j − 2 and
k+j/2−n/2−1, respectively, for SL2(Z). Then, we propose a conjecture on the congruence
between the Klingen-Eisenstein lift of the Miyawaki lift of f and g of type II and a certain lift
of a vector-valued Hecke eigenform of weight (k + j, k) for Sp2(Z). This conjecture implies
Harder’s conjecture. Through this formulation, we prove Harder’s conjecture in some cases.
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1. Introduction

Harder’s conjecture is one of the most important and interesting conjectures in the arith-
metic of automorphic forms. Let k and j be positive integers such that j is even. Then,
Harder’s conjecture predicts that the Fourier coefficients of a primitive form f of weight
2k+ j− 2 for SL2(Z) are related with those of a certain Hecke eigenform of weight (k+ j, k)
for Sp2(Z) modulo some prime ideal (cf. Conjecture 4.1).

One of main difficulties in treating this congruence arises from the fact that this is not
concerning the congruence between Hecke eigenvalues of two Hecke eigenforms of the same
weight. To overcome this issue, several approaches have been proposed (cf. [12], [13], [14], [4],
[6]). See also [9] for a paramodular form version. In [2], H. Atobe, M. Chida, T. Ibukiyama,
H. Katsurada and T. Yamauchi considered a conjecture concerning the congruence between
two liftings to higher degree of Hecke eigenforms (of integral weight) of degree two in the case
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k is even. This implies Harder’s conjecture. As a result, they proved Harder’s congruence in
some cases. Moreover, in [3], combining the result in cited above with Galois representation
theoretic method, under certain mild conditions, they proved Harder’ conjecture in the case
k is even and j ≡ 0 mod 4.

In this paper, we treat the case k is odd. We explain it more precisely. For a non-increasing
sequence k = (k1, . . . , kn) of non-negative integers we denote byMk(Spn(Z)) and Sk(Spn(Z))

the spaces of modular forms and cusp forms of weight k (or, weight k, if k = (

n︷ ︸︸ ︷
k, . . . , k))

for Spn(Z), respectively. (For the definition of modular forms, see Section 2). Let n be a
positive even integer and suppose that j ≡ n mod 4. For the f above and a primitive form

g of weight k+ j/2− n/2− 1 for SL2(Z), let Mn+1(f, g) = M
k+ j

2
+n

2
−1

n+1 (f, g) be the Miyawaki

lift of g and f of type II to the space of cusp forms of weight j
2
+ k+ n

2
− 1 for Spn+1(Z) (cf.

Theorem 4.4). For a sequence

k =
( n+1︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 2, . . . ,

j

2
+

3n

2
+ 2
)

with k ≥ n+2, let [Mn+1(f, g)]
k be the Klingen-Eisenstein lift ofMn+1(f, g) toMk(Sp2n+1(Z)).

Then, we propose the following conjecture:

Conjecture. (Conjecture 4.6) Let k, j and k be as above. Let f(z) ∈ S2k+j−2(SL2(Z)) be a
primitive form and p a prime ideal of Q(f). Then under certain assumptions, there exists a
Hecke eigenform F in S(k+j,k)(Sp2(Z)) such that

λAk
2n+1(F,g)

(T ) ≡ λ[Mn+1(f,g)]k(T ) mod p′

for any integral Hecke operator T . Here, Ak
2n+1(F, g) is a certain lift of g and F to Sk(Sp2n+1(Z)),

which will be defined in Theorem 4.3. (As for the definition of integral Hecke operators, see
Section 3.)

This conjecture implies Harder’s conjecture (cf. Theorem 4.8). Through this formulation,
we confirm Harder’s conjecture in some cases (cf. Corollaries 7.2 and 7.4).

This paper is organized as follows. In Section 2, we give a brief review of Siegel modular
forms, especially about their Q-structures and Z-structures. In Section 3, we give a summary
of several L-values. In Section 4, first we state Harder’s conjecture. Next we introduce several
lifts, and among other things define a certain lift of a primitive form and a vector-valued
modular form, and propose a conjecture on the congruence between it and the Klingen-
Eisenstein lift of the Miyawaki lift of type II, and explain how this conjecture implies Harder’s
conjecture. In Section 5, we consider the pullback formula of the Siegel Eisenstein series with
differential operators. In Section 6, we consider the congruence for vector-valued Klingen-
Eisenstein series, which is a generalization of [22] and [2]. Moreover, we give a formula for
the Fourier coefficients of the Klingen-Eisenstein series, from which we can confirm some
assumption in our main results. In Section 7, we state our main results, which confirm our
conjecture, and so Harder’s.
Acknowledgments. We thank Hiraku Atobe and David Yuen for helpful discussions.

Notation. Let R be a commutative ring. We denote by R× the unit group of R.
We denote by Mm,n(R) the set of m × n-matrices with entries in R. In particular put
Mn(R) = Mn,n(R). Put GLm(R) = {A ∈ Mm(R) | detA ∈ R×}, where detA denotes the
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determinant of a square matrix A. For an m × n-matrix X and an m × m-matrix A, we
write A[X] = tXAX, where tX denotes the transpose of X. Let Symn(R) denote the set of
symmetric matrices of degree n with entries in R. Furthermore, if R is an integral domain
of characteristic different from 2, let Hn(R) denote the set of half-integral matrices of degree
n over R, that is, Hn(R) is the subset of symmetric matrices of degree n with entries in the
field of fractions of R whose (i, j)-component belongs to R or 1

2
R according as i = j or not.

We say that an element A ofMn(R) is non-degenerate if detA ̸= 0. For a subset S ofMn(R)
we denote by Snd the subset of S consisting of non-degenerate matrices. If S is a subset
of Symn(R) with R the field of real numbers, we denote by S>0 (resp. S≥0) the subset of
S consisting of positive definite (resp. positive semi-definite) matrices. The group GLn(R)
acts on the set Symn(R) by

GLn(R)× Symn(R) ∋ (g, A) 7−→ A[g] ∈ Symn(R).
Let G be a subgroup of GLn(R). For a G-stable subset B of Symn(R) we denote by B/G the
set of equivalence classes of B under the action of G. We sometimes use the same symbol
B/G to denote a complete set of representatives of B/G. We abbreviate B/GLn(R) as B/∼
if there is no fear of confusion. Let R′ be a subring of R. Then two symmetric matrices A
and A′ with entries in R are said to be equivalent over R′ with each other and write A ∼R′ A′

if there is an element X of GLn(R
′) such that A′ = A[X]. We also write A ∼ A′ if there is

no fear of confusion. For square matrices X and Y we write X⊥Y =

(
X O
O Y

)
.

For an integer D ∈ Z such that D ≡ 0 or D ≡ 1 mod 4, let dD be the discriminant of

Q(
√
D), and put fD =

√
D
dD
. We call an integer D a fundamental discriminant if it is the

discriminant of some quadratic extension of Q or 1. For a fundamental discriminant D,

let
(
D
∗
)
be the character corresponding to Q(

√
D)/Q. Here we make the convention that(

D
∗
)
= 1 ifD = 1. For an integerD such thatD ≡ 0 or ≡ 1 mod 4, we define

(
D
∗
)
=
(
dD∗
)
.

We put e(x) = exp(2π
√
−1x) for x ∈ C, and for a prime number p we denote by ep(∗) the

continuous additive character of Qp such that ep(x) = e(x) for x ∈ Z[p−1].
Let K be an algebraic number field, and O = OK the ring of integers in K. For a prime

ideal p we denote by Kp and Op the p-adic completion of K and O, respectively, and put
O(p) = Op ∩ K. In the special case where K = Q, Z(p) = Zp ∩ Q. For a prime ideal p of
O, we denote by ordp(∗) the additive valuation of Kp normalized so that ordp(ϖ) = 1 for
a prime element ϖ of Kp. Moreover for any element a, b ∈ Op we write b ≡ a (mod p) if
ordp(a− b) > 0.

2. Siegel modular forms

In this section, we review basic facts about Siegel modular forms in [2, Section 2] with a
little modification. We denote by Hn the Siegel upper half-space of degree n, i.e.,

Hn = {Z ∈Mn(C) | Z = tZ = X +
√
−1Y, X, Y ∈Mn(R), Y > 0}.

For any ring R and any positive integer n, we define the group GSpn(R) by

GSpn(R) = {g ∈M2n(R) | gJntg = ν(g)Jn with some ν(g) ∈ R×},
where Jn =

(
0n −1n
1n 0n

)
. We call ν(g) the symplectic similitude of g. We also define the

symplectic group of degree n over R by

Spn(R) = {g ∈ GSpn(R) | ν(g) = 1}.



4 H. KATSURADA AND C.-H. LEE

In particular, if R is a subfield of R, we define

GSp+
n (R) = {g ∈ GSpn(R) | ν(g) > 0}.

We put Γ (n) = Spn(Z) for the sake of simplicity.
Let λ = (k1, k2, . . .) be a finite or an infinite sequence of non-negative integers such that

ki ≥ ki+1 for all i and km = 0 for some m. We call this a dominant integral weight. We call
the biggest integerm such that km ̸= 0 a depth of λ and write it by depth(λ). It is well known
that the set of dominant integral weights λ with depth(λ) ≤ n corresponds bijectively to the
isomorphism classes of irreducible polynomial representations of GLn(C). We denote this
representation by (ρn,λ, Vn,λ). We also denote it by (ρk, Vk) with k = (k1, . . . , kn) and call it
an irreducible polynomial representation of GLn(C) of highest weight k. Moreover, we write
k′ = (k1 − kn, . . . , kn−1 − kn, 0). Then, we have ρk ∼= detkn ⊗ρk′ with (ρk′ , Vk′) an irreducible
polynomial representation of highest weight k′. Here we understand that (ρk′ , Vk′) is the
trivial representation on C if k1 = · · · = kn−1 = kn. We fix a Hermitian inner product ⟨∗, ∗⟩
on V ′ = Vk′ such that

⟨ρk′(g)v, w⟩ = ⟨v, ρk′(tg)w⟩ for g ∈ GLn(C), v, w ∈ V ′.

Now we define vector-valued Siegel modular forms of Γ (n). For any V ′-valued function F
on Hn, and for any g = ( A B

C D ) ∈ GSp+
n (R), we put J(g, Z) = CZ +D and

F |ρk [g] = ρk(J(g, Z))
−1F (gZ).

From now on we identify ρk with detkn ⊗ρk′ . We say that F is a C∞-modular form of weight
ρk or k with respect to Γ (n) if F is a C∞-mapping from Hn to V ′ satisfying the following
condition:

F |ρk [γ] = F for any γ ∈ Γ.

We denote by M∞
k (Γ (n)) = M∞

ρk
(Γ (n)) the space of C∞-modular forms of weight ρk with

respect to Γ (n). We say that an element F of M∞
k (Γ (n)) is a (holomorphic) modular form

of weight ρk if F is a holomorphic mapping from Hn to V ′ which has the following Fourier
expansion

F (Z) =
∑

T∈Hn(Z)≥0

a(T, F )e(tr(TZ)), Z ∈ Hn, a(T, F ) ∈ V ′,

where tr(T ) is the trace of a matrix T . We note that F has the above Fourier expansion
automatically if n ≥ 2. We denote by Mk(Γ

(n)) = Mρk(Γ
(n)) the space of modular forms

of weight ρk with respect to Γ (n). We say that F ∈ Mρk(Γ
(n)) is a cusp form if we have

a(T, F ) = 0 unless T is positive definite. We denote by Sk(Γ
(n)) = Sρk(Γ

(n)) the subspace
of Mρk(Γ

(n)) consisting of cusp forms.
For F,G ∈M∞

ρ (Γ (n)) the Petersson inner product is defined by

(F,G) =

∫
Γ\Hn

⟨ρ(
√
Y )F (Z), ρ(

√
Y )G(Z)⟩ det(Y )−n−1dZ,

where Y = Im(Z) and
√
Y is a positive definite symmetric matrix such that

√
Y

2
= Y .

This integral converges if F and G are slowly increasing and at least one of them belongs to

Sρk(Γ
(n)). If k = (

n︷ ︸︸ ︷
k, . . . , k), we simply write Mk(Γ

(n)) =Mk(Γ
(n)) and Sk(Γ

(n)) = Sk(Γ
(n)).
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We note that

M(k+j,k)(Γ
(2)) =Mdetk ⊗Symj(Γ (2)) and S(k+j,k)(Γ

(2)) = Sdetk ⊗Symj(Γ (2)),

where Symj is the j-th symmetric tensor representation of GL2(C).
For a representation (ρ, V ) of GLn(C), we denote by F(Hn, V ) the set of Fourier series F

on Hn with values in V of the following form:

F (Z) =
∑

A∈Hn(Z)≥0

a(A,F )e(tr(AZ)), Z ∈ Hn, a(A,F ) ∈ V.

For F ∈ F(Hn, V ) and a positive integer r ≤ n we define Φ(F ) = Φn
r (F ) as

Φ(F )(Z1) = lim
λ→∞

F
((Z1 O

O
√
−1λ1n−r

))
, Z1 ∈ Hr.

We make the convention that F(H0, V ) = V and Φn
0 (F ) = a(On, F ). Then, Φ(F ) belongs to

F(Hr, V ). For a representation (ρ, V ) of GLn(C), we denote by F̃(Hn, V ) = F̃(Hn, (ρ, V )) the
subset of F(Hn, V ) consisting of elements F such that the following condition is satisfied:

a(A[g], F ) = ρ(g)a(A,F ) for any g ∈ GLn(C).(K0)

Now let ℓ = (l1, . . . , ln) be a dominant integral weight of length n of depth m. Then
we realize the representation space Vℓ in terms of bideterminants (cf. [17]). Let U = (uij)
be an m × n matrix of variables. For a positive integer a ≤ m let SIn,a denote the set of
strictly increasing sequences of positive integers not greater than n of length a. For each
J = (j1, . . . , ja) ∈ SIn,a we define UJ as∣∣∣∣∣∣

u1,j1 . . . u1,ja
...

. . .
...

ua,j1 . . . ua,ja

∣∣∣∣∣∣ .
Then we say that a polynomial P (U) in U is a bideterminant of weight ℓ if P (U) is of the
following form:

P (U) =
m∏
i=1

li−li+1∏
j=1

UJij ,

where (Ji1, . . . , Ji,li−li+1
) ∈ SI li−li+1

n,i . Here we make the convention that
∏li−li+1

j=1 UJij = 1 if
li = li+1. Let BDℓ be the set of all bideterminants of weight ℓ. Here we make the convention
that BDℓ = {1} if ℓ = (0, . . . , 0). For a commutative ring R and an R-algebra S let S[U ]ℓ
denote the R-module of all S-linear combinations of P (U) for P (U) ∈ BDℓ. Then we can
define an action of GLn(C) on C[U ]ℓ as

GLn(C)× C[U ]ℓ ∋ (g, P (U)) 7→ P (Ug) ∈ C[U ]ℓ,

and we can take the C-vector space C[U ]ℓ as a representation space Vℓ of ρℓ under this action.
Let m ≤ n− 1 be a non-negative integer and U = (uij) be an m× n matrix of variables.

Let k = (k1, . . . , kn) with k1 ≥ · · · ≥ km > km+1 = · · · = kn and k′ = (k1 − km+1, . . . , km −

km+1,

n−m︷ ︸︸ ︷
0, . . . , 0). Here we make the convention that k = (k1, . . . , k1) and k′ = (0, . . . , 0)

if m = 0. Then under this notation and convention, Mk(Γ
(n)) can be regarded as a C-

subspace of Hol(Hn)[U ]k′ , where Hol(Hn) denotes the ring of holomorphic functions on Hn.
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We sometimes write F (Z)(U) for F ∈ Mk(Γ
(n)) for Z ∈ Hn to highlight that F is C[U ]k′-

valued. Moreover, the Fourier expansion of F ∈Mk(Γ
(n)) can be expressed as

F (Z) =
∑

A∈Hn(Z)≥0

a(A,F )e(tr(AZ)),

where a(A,F ) = a(A,F )(U) ∈ C[U ]k′ .
Let r be an integer such that m ≤ r ≤ n and let l = (k1, . . . , kr−1, kr) and l′ = (k1 −

km+1, . . . , kr − km+1,

r−m︷ ︸︸ ︷
0, . . . , 0). For the m× n matrix U , let U (r) = (uij)1≤i≤m,1≤j≤r and put

W ′ = C[U (r)]l′ . Then we can define a representation (τ ′,W ′) of GLr(C). The representations
(ρk′ , Vk′) and (τ ′,W ′) satisfy the following conditions:

(K1) W ′ ⊂ Vk′ .

(K2) ρk′

(( g1 g2
O g4

))
v = τ ′(g1)v for

( g1 g2
O g4

)
∈ GLn(C) with g1 ∈ GLr(C) and v ∈ W ′.

(K3) If v ∈ Vk′ satisfies the condition

ρk′

((
1r O
O h

))
v = v for any h ∈ GLn−r(C),

then v belongs to W ′.

Let F (Z) =
∑

A∈Hn(Z)≥0
a(A,F )e(tr(AZ)) ∈ F(Hn, Vk′) Then, in a way similar to [1,

(2.3.29)], we have

Φn
r (F )(Z1) =

∑
A1∈Hr(Z)≥0

a
((

A1 O
O O

)
, F
)
e(tr(A1Z1)) (Z1 ∈ Hr).

Suppose that F belongs to F̃(Hn, Vk′). Then, by (K0),

ρk′

((
1r O
O h

))(
a(
(
A1 O
O O

)
, F )

)
= a(

(
A1 O
O O

)
, F ) for any h ∈ GLn−r(C).

Hence, by (K3), a(
(
A1 O
O O

)
, F ) belongs to W ′ for any A1 ∈ Hr(Z)≥0. This implies that

Φn
r (F ) belongs to F(Hr,W

′). We easily see that Φn
r (F ) belongs to F̃(Hr,W

′), and therefore

Φn
r sends F̃(Hn, Vk′) to F̃(Hr,W

′). It is easily seen that it induces a mapping from Mρ(Γ
(n))

to Mτ (Γ
(r)), where ρ = detkn ⊗ρk′ and τ = detkn ⊗τ ′. Let ∆n,r be the subgroup of Γ (n)

defined by

∆n,r :=

{(
∗ ∗

O(n−r,n+r) ∗

)
∈ Γ (n)

}
.

For F ∈ Sτ (Γ
(r)) the Klingen-Eisenstein series [F ]ρτ (Z, s) of F associated to ρ is defined by

[F ]ρτ (Z, s) :=
∑

γ∈∆n,r\Γ (n)

( det Im(Z)

det Im(prnr (Z))

)s
F (prnr (Z))|ργ.

Here prnr (Z) = Z1 for Z =

(
Z1 Z2
tZ2 Z4

)
∈ Hn with Z1 ∈ Hr, Z4 ∈ Hn−r, Z2 ∈ Mr,n−r(C). We

also write [F ]ρτ (Z, s) as [F ]
k
l (Z, s) or [F ]

k(Z, s).
Suppose that kn is even and 2Re(s)+kn > n+r+1. Then, [F ]ρτ (Z, s) converges absolutely

and uniformly on Hn. This is proved by [23] in the scalar-valued case, and can be proved
similarly in general case. If [F ]k(Z, s) can be continued holomorphically in the neighborhood
of 0 as a function of s, we put [F ]ρτ (Z) = [F ]ρτ (Z, 0). If [F ]

ρ
τ (Z) is holomorphic as a function of
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Z, it belongs toMk(Γ
(n)), and we say that it is the Klingen-Eisenstein lift of F toMk(Γ

(n)).
In particular, if kn > n+r+1, then [F ]ρτ (Z, s) is holomorphic at s = 0 as a function of s, and
[F ]ρτ (Z, 0) belongs to Mk(Γ

(n)), and Φρ
τ ([F ]

ρ
τ ) = F . We note that [F ]ρτ (Z) is not necessarily

a holomorphic as a function of Z if kn ≤ n+ r + 1.
For a positive integer k, we define En,k(Z, s) as

En,k(Z, s) =
∑

γ∈∆n,0\Γ (n)

(det Im(Z))s|γ

and call it the Siegel-Eisenstein series of weight k with respect to Γ (n). The Siegel-Eisenstein
series En,k(Z, s) can be continued meromorphically to the whole s-plane as a function of s,

holomorphic at s = 0. We put En,k(Z) = En,k(Z, 0). Let k = (

m︷ ︸︸ ︷
k + l, . . . , k + l,

n−m︷ ︸︸ ︷
k, . . . , k) such

that k, l ≥ 0, and put ρk = detk ⊗ρk′ and τ = detk ⊗ρl′ with k′ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0) and

l′ = (

m︷ ︸︸ ︷
l, . . . , l). Then, for F ∈ Sτ (Γ

(m)) we can define the Klingen-Eisenstein series [F ]ρkτ (Z, s)
of F associated to ρk if k is even and 2Re(s) + k > n+m+ 1. We note that C[U (m)]l′ is a
subspace of C[U ]k′ spanned by (detU (m))l, and hence we have a natural isomorphism

ι : Sk+l(Γ
(m)) ∋ f 7→ f̃ := (detU (m))lf ∈ Sτ (Γ

(m)).

We sometimes write [f ]ρk or [f ]k instead of [f̃ ]ρkτ for f ∈ Sk+l(Γ
(m)).

Let ℓ = (l1, . . . , ln) be a dominant integral weight of length n of depth m. Let Ṽ = Ṽℓ =

Q[U ]ℓ. Then, (ρℓ|GLn(Q), Ṽ ) is a representation of GLn(Q), and Ṽ ⊗ C = Vℓ. We consider
a Z-structure of Vℓ. To do this, we fix a basis S = Sℓ = {P} of Z[U ]ℓ. We note here that
the bideterminants are not linearly independent over Z and even over C in general, so the
set BDℓ is not necessarily a basis of Z[U ]ℓ. Let R be a subring of C. Since the set S is also
linearly independent over C, an element a of R[U ]ℓ is uniquely written as

a =
∑
P∈S

aPP with aP ∈ R.

Let K be a number field, and O the ring of integers in K. For a prime ideal p of O and
a = a(U) =

∑
P∈S aPP ∈ K[U ]ℓ with aP ∈ K, define

ordp(a) = min
P∈S

ordp(aP ).

We say that p divides a if ordp(a) > 0.

Remark 2.1. The definition of ordp does not depend on the choice of a basis of Z[U ]ℓ. We
note that p does not divide a = a(U) if p does not divide a(U0) for some element U0 of
Mm,n(O).

For a subring R of C, we denote by Mk(Γ
(n))(R) the R-submodule of Mk(Γ

(n)) consisting
of all modular forms F such that a(T, F ) ∈ R[U ]k′ for all T ∈ Hn(Z)≥0. Here, k′ = (k1 −

km+1, . . . , km − km+1,

n−m︷ ︸︸ ︷
0, . . . , 0) for k = (k1, . . . , kn) with k1 ≥ · · · ≥ km > km+1 = · · · = kn as

stated before.
We consider tensor products of modular forms, which will be used on and after Sec-

tion 5. Let n1 and n2 be positive integers. Let k1 = (k1, . . . , km, km+1, . . . , kn1) and k2 =
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(k1, . . . , km, km+1, . . . , kn2) be non-increasing sequences of integers such that km > km+1 =
· · · = kni

= l for i = 1, 2. Then (ρk1 ⊗ρk2 , V1⊗V2) is a representation of GLn1(C)×GLn2(C).

Put k′
1 = (k1 − l, . . . , km − l,

n1−m︷ ︸︸ ︷
0, . . . , 0) and k′

2 = (k1 − l, . . . , km − l,

n2−m︷ ︸︸ ︷
0, . . . , 0). Then,

ρk1 ⊗ ρk2 = (detl ⊗ρk′
1
) ⊗ (detl ⊗ρk′

2
) with (ρk′

i
, V ′

i ) a polynomial representation of high-
est weight k′

i for i = 1, 2. To make our formulation smooth, we sometimes regard a modular
form of scalar weight k for Γ (n) as a function with values in the one-dimensional vector
space spanned by detU l with a non-negative integer l ≤ k, where U is an n × n matrix of
variables. Let U1 and U2 be m× n1 and m× n2 matrices, respectively, of variables and for
a commutative ring R and an R-algebra S let

S[U1, U2]k′
1,k

′
2
=
{∑

j

Pj(U1)Pj(U2) ( finite sum ) with Pj(Ui) ∈ S[Ui]k′
i
(i = 1, 2)

}
.

Here we make the convention that Pj(Ui) ∈ ⟨(detUi)
k1−l⟩C if ni = m and k1 = · · · = km

as stated above. Then, as a representation space W = Wk′
1,k

′
2
of ρk′

1
⊗ ρk′

2
we can take

C[U1, U2]k′
1,k

′
2
. Let

W̃ = W̃k′
1,k

′
2
= Q[U1, U2]k′

1,k
′
2
.

Then W̃ ∼= Ṽ ′
1 ⊗ Ṽ ′

2 and W̃ ⊗Q C = W . Let

M =Mk′
1,k

′
2
= Z[U1, U2]k′

1,k
′
2
.

We note that

M =

 ∑
Pτ1∈Sk′1

,Pτ2∈Sk′2

aτ1,τ2Pτ1(U1)Pτ2(U2)

∣∣∣∣∣∣ aτ1,τ2 ∈ Z

 .

Here we make the convention that Pτi(U2) = (detUi)
k1−l if ni = m and k1 = · · · = km.

Therefore, M is a lattice of W̃ and M ∼= L1 ⊗ L2 with Li = Z[Ui]k′
i
(i = 1, 2). Thus

(ρk1 ⊗ ρk2 , V1 ⊗ V2) has also a Q-structure and Z-structure and we can define ordp(a⊗ b) for

a ⊗ b ∈ W̃K . If dimC V1 = 1, then we identify V1, Ṽ1 and L1 with C,Q and Z, respectively,
and for a, b ∈ V1 and w ∈ V2, we write a⊗b and a⊗w as ab and aw, respectively through the
identifications V1 ⊗ V1 ∼= V1 and V1 ⊗ V2 ∼= V2 ⊗ V1 ∼= V2. The tensor product Mk1(Γ

(n1))⊗
Mk2(Γ

(n2)) is regarded as a C-subspace of (Hol(Hn1)⊗ Hol(Hn2))[U1, U2]k′
1,k

′
2
.

3. Several automorphic L-functions and their special values

In this section we review several arithmetical properties of Hecke eigenvalues and L values
of modular forms in [2, Section 2] without proof. Throughout this section, let k = (k1, . . . , kn)
with k1 ≥ · · · ≥ kn ≥ 0. Let Ln = L(Γ (n),GSp+

n (Q) ∩M2n(Z)) be the Hecke algebra over
Z associated to the Hecke pair (Γ (n),GSp+

n (Q) ∩ M2n(Z)) and for a subring R of C put
Ln(R) = Ln ⊗Z R. For an element T = Γ (n)gΓ (n) ∈ Ln(C) and F ∈Mk(Γ

(n)) we can define
F |T as in [2, Section 3]. This defines an action of the Hecke algebra Ln(C) on Mk. The
operator F 7→ F |T with T ∈ Ln(C) is called the Hecke operator. We say that F is a Hecke
eigenform if F is a common eigenfunction of all Hecke operators T ∈n (C). Then we have

F |T = λF (T )F with λF (T ) ∈ C for any T ∈ Ln(C).
We call λF (T ) the Hecke eigenvalue of T with respect to F . For a Hecke eigenform F in
Mk(Γ

(n)), we denote by Q(F ) the field generated over Q by all the Hecke eigenvalues λF (T )
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with T ∈ Ln(Q) and call it the Hecke field of F . For two Hecke eigenforms F and G we
sometimes write Q(F,G) = Q(F )Q(G). We say that an element T ∈ Ln(Q) is integral with

respect to Mk(Γ
(n)) if F |T ∈Mk(Γ

(n))(Z) for any F ∈Mk(Γ
(n))(Z). We denote by L

(k)
n the

subset of Ln(Q) consisting of all integral elements with respect to Mk(Γ
(n)). The following

two propositions are due to [2, Section 4].

Proposition 3.1. We have Ln ⊂ L
(k)
n for any k = (k1, . . . , kn) with kn ≥ n+ 1.

Proposition 3.2. Let k = (k1, . . . , kn) with kn ≥ n + 1. Let F be a Hecke eigenform in

Sk(Γ
(n)). Then λF (T ) belongs to OQ(F ) for any T ∈ L

(k)
n .

For a non-zero rational number a, we define an element [a] = [a]n of Ln by [a]n =
Γ (n)(a1n)Γ

(n). For each integer m define an element T (m) of Ln by

T (m) =
∑

d1,...,dn,e1,...,en

Γ (n)(d1⊥ · · ·⊥dn⊥e1⊥ · · ·⊥en)Γ (n),

where d1, . . . , dn, e1, . . . , en run over all positive integer satisfying

di|di+1, ei+1|ei (i = 1, . . . , n− 1), dn|en, diei = m (i = 1, . . . , n).

Furthermore, for i = 1, . . . , n and a prime number p put

Ti(p
2) = Γ (n)(1n−i⊥p1i⊥p21n−i⊥p1i)Γ (n).

As is well known, Ln(Q) is generated over Q by T (p), Ti(p
2) (i = 1, . . . , n), and [p−1]n for

all p. We note that Tn(p
2) = [p]n. We note that Ln is generated over Z by T (p) and

Ti(p
2) (i = 1, . . . , n) for all p.

Let Ln,p = L(Γ (n),GSp+
n (Q) ∩ GL2n(Z[p−1])) be the Hecke algebra associated with the

pair (Γ (n),GSp+
n (Q) ∩ GL2n(Z[p−1])). Then Ln,p can be considered as a subalgebra of Ln,

and is generated over Q by T (p) and Ti(p
2) (i = 1, 2, . . . , n), and [p−1]n.

We now review the Satake p-parameters of Ln,p; letPn = Q[X±
0 , X

±
1 , . . . , X

±
n ] be the ring of

Laurent polynomials in X0, X1, . . . , Xn over Q. Let Wn be the group of Q-automorphisms
of Pn generated by all permutations in variables X1, . . . , Xn and by the automorphisms
τ1, . . . , τn defined by

τi(X0) = X0Xi, τi(Xi) = X−1
i , τi(Xj) = Xj (j ̸= i).

Moreover, a group W̃n isomorphic to Wn acts on the set Tn = (C×)n+1 in a way similar to
the above. Then there exists a Q-algebra isomorphism Φn,p, called the Satake isomorphism,
from Ln,p to the Wn-invariant subring PWn

n of Pn. Then for a Q-algebra homomorphism λ
from Ln,p to C, there exists an element (α0(p, λ), α1(p, λ), . . . , αn(p, λ)) of Tn satisfying

λ(Φ−1
n,p(F (X0, X1, . . . , Xn))) = F (α0(p, λ), α1(p, λ), . . . , αn(p, λ))

for F ∈ PWn
n . The equivalence class of (α0(p, λ), α1(p, λ), . . . , αn(p, λ)) under the action of

W̃n is uniquely determined by λ. We call this the Satake parameters of Ln,p determined
by λ. Now let F be a Hecke eigenform in Mk(Γ

(n)). Then for each prime number p, F
defines a Q-algebra homomorphism λF,p from Ln,p to C in a usual way, and we denote by
α0(p), α1(p), . . . , αn(p) the Satake parameters of Ln,p determined by F .

We write ΓC(s) = 2(2π)−sΓ(s) and ΓR(s) = π−s/2Γ(s/2) as usual. Let

f(z) =
∞∑

m=1

a(m, f)e(mz)
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be a primitive form in Sk(SL2(Z)), that is, let f be a Hecke eigenform whose first coefficient
is 1. For a prime number p let β1,p(f) and β2,p(f) be complex numbers such that β1,p(f) +
β2,p(f) = a(p, f) and β1,p(f)β2,p(f) = pk−1. Then for a Dirichlet character χ we define the
Hecke L-function twisted by χ as

L(s, f, χ) =
∏
p

(
(1− β1,p(f)χ(p)p

−s)(1− β2,p(f)χ(p)p
−s)
)−1

.

We write L(s, f, χ) = L(s, f) if χ is the principal character.
Let {f1, . . . , fd} be a basis of Sk(Γ

(1)) consisting of primitive forms. Let K be an algebraic
number field containing Q(f1) · · ·Q(fd), and O the ring of integers inK. Let f be a primitive
form in Sk(SL2(Z)). Then Shimura [29] showed that there exist two complex numbers c±(f),
uniquely determined up to multiplication by elements of Q(f)×, such that the following

property holds: The value
ΓC(l)

√
−1

l
L(l, f, χ)

τ(χ)cs(f)
belongs to Q(f)(χ) for any positive integer

l ≤ k−1 and a Dirichlet character χ, where τ(χ) is the Gauss sum of χ, and s = s(l, χ) = +
or − according as χ(−1) = (−1)l or (−1)l−1.

We note that the above value belongs to K(χ). For short, we write

L(l, f, χ; cs(f)) =
ΓC(l)

√
−1

l
L(l, f, χ)

τ(χ)cs(f)
.

We sometimes write cs(l,χ)(f) = cs(l)(f) and L(l, f, χ; cs(l,χ)(f)) = L(l, f ; cs(l)(f)) if χ is the
principal character. We note that the value L(l, f, χ; cs(f)) depends on the choice of cs(f),

but if (χη)(−1) = (−1)l+m, then s := s(l, χ) = s(m, η) and, the ratio
L(l, f, χ; cs(f))

L(m, f, η; cs(f)
does

not depend on cs(f), which will be denoted by
L(l, f, χ)

L(m, f, η)
.

Let f be a primitive form in Sk(SL2(Z)). Let f1, . . . , fd be a basis of Sk(SL2(Z)) con-
sisting of primitive forms with f1 = f and let Df be the ideal of Q(f) generated by all∏d

i=2(λfi(T (m))− λf (T (m)))’s (m ∈ Z>0). For a prime ideal p of an algebraic number field,
let pp be the prime number such that (pp) = Z ∩ p.

Let F be a Hecke eigenform in Mk(Γ
(n)), and for a prime number p we take the p-Satake

parameters α0(p), α1(p), . . . , αn(p) of F so that

α0(p)
2α1(p) · · ·αn(p) = pk1+···+kn−n(n+1)/2.

We define the polynomial Lp(X,F, Sp) by

Lp(X,F, Sp) = (1− α0(p)X)
n∏

r=1

∏
1≤i1<···<ir≤n

(1− α0(p)αi1(p) · · ·αir(p)X)

and the spinor L function L(s, F, Sp) by

L(s, F, Sp) =
∏
p

Lp(p
−s, F, Sp)−1.
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We note that L(s, f, Sp) is the Hecke L-function L(s, f) if f is a primitive form. In this case
we write Lp(s, f) for Lp(s, f, Sp). We also define the polynomial Lp(X,F, St) by

(1−X)
n∏

i=1

(1− αi(p)X)(1− αi(p)
−1X)

and the standard L-function L(s, F, St) by

L(s, F, St) =
∏
p

Lp(p
−s, F, St)−1.

For a Hecke eigenform F ∈ Sk(Γ
(r)) put

L(s, F, St) = ΓC(s)
r∏

i=1

ΓC(s+ k − i)
L(s, F, St)

(F, F )
.

Remark 3.3. We note that for a positive integer m ≤ k − r

L(m,F, St) = Ar,k,m
L(m,F, St)

πr(k+m)+m−r(r+1)/2(F, F )

with an element Ar,k,m ∈ Z[2−1] such that ordp(Ar,k,m) = 0 for any prime number p ≥
2k − r − 1.

Proposition 3.4. Let F be a Hecke eigenform in Sk(Γ
(r)). We define n0 = 3 if r ≥ 5 with

r ≡ 1 mod 4 and n0 = 1 otherwise. Let m be a positive integer n0 ≤ m ≤ k − r such that
m ≡ r (mod 2). Then, a(A,F )a(B,F )L(m,F, St) belongs to Q(F ) for any A,B ∈ Hr(Z)>0.

Proof. We note that the value a(A,F )a(B,F )L(m,F, St) remains unchanged if we replace
F by γF with any γ ∈ C×. By the multiplicity one theorem for Hecke eigenforms (cf. [2,
Appendix A]), we can take some non-zero complex number γ such that γF ∈ Sk(Γ

(r))(Q(F )).
For this γ, we see L(m, γF, St) ∈ Q(F ) by [28], Appendix A. This proves the assertion. □

4. Harder’s conjecture and its modification

In this section, first we state the original Harder’s conjecture in [10], and we treat a
generalized version of this conjecture. Let R be a commutative ring, and a an ideal of R.
For two polynomials P (X) =

∑n
i=0 aiX

i and Q(X) =
∑n

i=0 biX
i with coefficients in R, we

write
P (X) ≡ Q(X) mod a

if ai ≡ bi (mod a) for any 0 ≤ i ≤ m. When R is a ring of integers in an algebraic number
field and p is a prime ideal of R, for two polynomial P (X), Q(X) ∈ Rp[X] we sometimes write
P (X) ≡ Q(X) mod p if P (X) ≡ Q(X) mod Rpp. Now we will state Harder’s conjecture.

Conjecture 4.1. ([10]) Let k and j be non-negative integers such that j is even and k ≥
3. Let f =

∑
a(n, f)e(nz) ∈ S2k+j−2(SL2(Z)) be a primitive form, and suppose that a

“large” prime p of Q(f) divides L(k + j, f ; cs(k+j)). Then, there exists a Hecke eigenform

F ∈ S(k+j,k)(Γ
(2)), and a prime ideal p′ | p in (any field containing) Q(f)Q(F ) such that,

for all primes p

Lp(X,F, Sp) ≡ Lp(X, f)(1− pk−2X)(1− pj+k−1X) (mod p′).

In particular,
λF (T (p)) ≡ pk−2 + pj+k−1 + a(p, f) (mod p′).
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To avoid the ambiguity on choosing cs(k+j) (cf. [2, Remank 3.8. (2)]), we propose the
following conjecture, which we also call Harder’s conjecture.

Conjecture 4.2. Let k and j be non-negative integers such that k ≥ 3 and j ≥ 4 is even. Let
f be as that in Conjecture 4.1. Suppose that a prime ideal p of Q(f) satisfies pp > 2k+ j−2

and that p divides
L(k + j, f)

L(kj, f)
, where kj = k+ j/2 or k+ j/2+1 according as j ≡ 0 (mod 4)

or j ≡ 2 (mod 4). Then the same assertion as Conjecture 4.1 holds.

The above conjecture does not address the congruence between the Hecke eigenvalues of
two Hecke eigenforms in the same space, and this is one of the reasons that it is not easy
to confirm it. To make it more approachable, we reformulate it in the case k is odd (cf.
Conjecture 4.6). For even k, see [2], [3].

To do so, first, we consider several lifts. The first two theorems are special cases of [2,
Theorem 4.2. (1)] and [2, Theorem 4.3], respectively.

Theorem 4.3. Let k, j, n be positive integers such that j, n are even and k is odd. Suppose
that k ≥ n+ 3, j ≥ n+ 4 and j ≡ n mod 4. Put

k =
( n+1︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 2, . . . ,

j

2
+

3n

2
+ 2
)
.

Then, for a primitive form g ∈ Sk+j/2−n/2−1(SL2(Z)) and a Hecke eigenform G ∈ S(k+j,k)(Γ
(2)),

there exists a Hecke eigenform Ak
2n+1(G, g) ∈ Sk(Γ

(2n+1)) such that

L(s,Ak
2n+1(G, g), St) = L(s, g, St)

n∏
i=1

L(s+ k +
j

2
+
n

2
− 1− i, G, Sp)

Theorem 4.4. Let k, n, d be positive integers such that k > d. Let f be a primitive form in
S2k(SL2(Z)) and G a Hecke eigenform in Sl(Γ

(n)).

(1) Suppose that k ≡ n + d mod 2 and that l ≥ k + n + d. Then there exists a Hecke

eigenform Mk′

n+2d(f,G) ∈ Sk′(Γ (n+2d)) with k′ = (

n︷ ︸︸ ︷
l, . . . , l,

2d︷ ︸︸ ︷
k + n+ d, . . . , k + n+ d)

such that

L(s,Mk′

n+2d(f,G), St) = L(s,G, St)
2d∏
i=1

L(s+ k + d− i, f).

(2) Suppose that k ≡ d mod 2 and that k+ d ≥ l. Then, there exists a Hecke eigenform

Mk′

n+2d(f,G) ∈ Sk′(Γ (n+2d)) with k′ = (

2d︷ ︸︸ ︷
k + d, . . . , k + d,

n︷ ︸︸ ︷
l, . . . , l) such that

L(s,Mk′

n+2d(f,G), St) = L(s,G, St)
2d∏
i=1

L(s+ k + d− i, f).

In (1) and (2), we make the convention that L(s,G, St) = ζ(s) if n = 0.

We say that Mk′

n+2d(f,G) in Theorem 4.4 (1) (resp. (2)) is the Miyawaki lift of f and

G of type I (resp, type II). We sometimes write Ml
n+2d(f,G) instead of Mk′

n+2d(f,G) if
k′ = (l, . . . , l). In this case, the Miyawaki lift of type I was constructed by Ikeda [19] under
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the non-vanishing condition. In the case n = 0 in Theorem 4.4, we write I2d(f) instead of
Mk′

2d(f,G), and we call it the Duke-Imamoglu-Ikeda lift of f (cf. [18]).

Theorem 4.5. (1) Let k and l be positive even integers such that k ≥ l, and put k =
(k, k, k, k, l). Then, for a primitive form f ∈ S2k−6(SL2(Z)) and Hecke eigenform
G ∈ S(k,k,l−2)(Γ

(3)), there exists a Hecke eigenform K5(f,G) ∈ Sk(Γ
(5)) such that

L(s,K5(f,G), St) = L(s,G, St)
2∏

i=1

L(s+ k − 2− i, f).

(2) Let k and l be even positive integers such that k ≥ l. Then, for a primitive f ∈
S2k−4(SL2(Z)) and a Hecke eigenform G ∈ S(k,l−2)(Γ

(2)), there exists a Hecke eigen-

form AII
4 (f,G) ∈ S(k,k,k,l)(Γ

(4)) such that

L(s,AII
4 (f,G), St) = L(s,G, St)

2∏
i=1

L(s+ k − 1− i, f).

Proof. The assertion (2) for l = k has been proved in [2, Theorem 4.2 (2)], and another case
can also be proved similarly. From now on we use the notation in [2, Appendix A]. To prove
(1), put

ψ = ψG ⊞ πf [2],

where ψG is the Arthur parameter associated with G, and πf is the irreducible (unitary
cuspidal automorphic self-dual) representation of PGL2(AQ) such that

L∞(s, πf ) = L(s+
2k − 7

2
, f).

Then, ψG is one of the following forms:

• (i) ψG = πG[1] with πG an irreducible representation of PGL7(AQ) such that

L∞(s, πG) = L(s,G, St).

• (ii) ψG = π0[1] ⊞ π1[2] with π0 and π1 irreducible representations of PGL3(AQ) and
PGL2(AQ), respectively, such that

L∞(s, π0) = L(s, g, St) with g ∈ Sl−4(SL2(Z)),

L∞(s, π1) = L(s+
2k − 3

2
, f1) with f1 ∈ S2k−2(SL2(Z)).

Suppose that (i) holds. We note that the sets of positive eigenvalues of the infinitesimal
characters of πG,∞ and πf,∞ are {(2k−7)/2} and {k−1, k−2, l−5}, respectively. Therefore,
we easily see that ψ satisfies the conditions in [2, Theorem A.1] except (f). Moreover, by [2,
Remark A.2 (4)], we have

ε(πf × πG)
min(2,1) = ε(πf × πG) = −1 = (−1)

2·2
4 ,

and ψ also satisfies the condition (f). Therefore the assertion follows from [2, Theorem A.1].
Suppose that (ii) holds. We note that the sets of positive eigenvalues of the infinitesimal

characters of π0,∞ and π1,∞ are {l − 5} and {(2k − 3)/2}, respectively. Therefore, by [2,
Remark A.2 (4)] we have

ε(πf × π0)
min(2,1)ε(πf × π1)

min(2,2) = ε(πf × π0) = −1 = (−1)
2·2
4 ,
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and

ε(π1 × π0)
min(2,1)ε(π1 × πf )

min(2,2) = ε(π1 × π0) = −1 = (−1)
2·2
4 .

Thus the assertion has been proved similarly to (i). □

Let F and G be Hecke eigenforms in Mk(Γ
(n)) and p a prime ideal of Q(F ). We say that

F is Hecke congruent to G modulo p if there is a prime ideal p′ of Q(F ) ·Q(G) lying above
p such that

λG(T ) ≡ λF (T ) (mod p) for any T ∈ L(k)
n .

We denote this property by

G ≡ev F (mod p).

Conjecture 4.6. Let k, j and n be positive integers. Suppose that

(a) n ≡ k − 1 ≡ j ≡ 0 mod 2 and j ≡ n mod 4.
(b) k > n+ 1 and j > n− 1.

Put

k =
( n+1︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 2, . . . ,

j

2
+

3n

2
+ 2
)
.

Let f and g be primitive forms in S2k+j−2(SL2(Z)) and in Sk+ j
2
−n

2
−1(SL2(Z)), respectively.

Let p be a prime ideal of Q(f) such that pp > 2k + j − 2 and suppose that p divides
L(k + j, f)

L(j/2 + k + n/2− 1, f)
. Then, there exists a Hecke eigenform F ∈ S(k+j,k)(Γ

(2)) such that

Ak
2n+1(F, g) ≡ev [Mn+1(f, g)]

k (mod p).

Remark 4.7. Since we have j +3n/2+ 2 > 3n/2+ 1, [Mn+1(f, g)]
k belongs to Mk(Γ

(2n+1))
by [2, Propoition 2.1, (2)].

Theorem 4.8. Let the notation be as in Conjecture 4.6.

(1) Conjecture 4.2 holds for the case j ≡ 2 mod 4 if Conjecture 4.6 holds for n = 2.
(2) Suppose that 2k + j − 2 ≥ 20. Then Conjecture 4.2 holds for the case j ≡ 0 mod 4

if Conjecture 4.6 holds for n = 4.

Proof. The assertion can be proved in the same way as [2, Theorem 4.8]. □

5. Pullback formula

In this section, we review the pullback formula for the Siegel Eisenstein series with differ-
ential operators in [2, Section 5], and give a generalization of [2, Theorem 5.8]. We also give
an explicit differential operator which is used in the proof of our main results.

Now for an integer n ≥ 2, fix a partition (n1, n2) with n = n1 + n2 with ni ≥ 1. Let λ
be a dominant integral weight with depth(λ) ≤ min(n1, n2). For i = 1, 2, let (ρni,λ, Vni,λ) be
the representation of GLni

(C) defined in Section 2. Put Vλ,n1,n2 = Vn1,λ ⊗ Vn2,λ. We regard
Hn1 ×Hn2 as a subset of Hn by the diagonal embedding.

We consider Vλ,n1,n2-valued differential operators D on scalar-valued functions of Hn, sat-
isfying Condition C(k, λ, n1, n2) below on automorphy.
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For irreducible representations (ρi, Vi) of GLni
(C) for i = 1, 2, a (V1⊗V2)-valued function

f on Hn1 ×Hn2 , and gi =

(
Ai Bi

Ci Di

)
∈ Spni

(R), we write

(f |ρ1,ρ2 [g1, g2])(Z1, Z2) =
(
ρ1(C1Z1 +D1)

−1 ⊗ ρ2(C2Z2 +D2)
−1
)
f(g1Z1, g2Z2), Zi ∈ Hni

.

We regard Spn1
(R)× Spn2

(R) as a subgroup of Spn(R) by

ι(g1, g2) =


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 (gi ∈ Spni
(R) for i = 1, 2).

For variables Z = (zij) of Hn, we denote by ∂Z the following n × n symmetric matrix of
partial derivations

∂Z =

(
1 + δij

2

∂

∂zij

)
1≤i,j≤n

.

From now on, for an m × n matrix U = (uij)1≤i≤m,1≤j≤n of variables, we say that Q(U) is
a polynomial in U if it is a polynomial in uij (1 ≤ i ≤ m, 1 ≤ j ≤ n). In particular if U
is an n × n symmetric matrix of variables, we say that Q(U) is a polynomial in U if it is a
polynomial in uij (1 ≤ i ≤ j ≤ n).

Fix k, λ, n1, and n2 with depth(λ) ≤ min(n1, n2). Let D = P (∂Z) for a Vλ,n1,n2-valued
polynomial P (T ) in an n×n symmetric matrix T . Assume that for any holomorphic function
F on Hn and any (g1, g2) ∈ Spn1

(R)× Spn2
(R), the operator D satisfies

(C(k, λ, n1, n2)) Res(D(F |k[ι(g1, g2)]) = (Res D(F ))|detk ⊗ρn1,λ
,detk ⊗ρn2,λ

[g1, g2],

where Res means the restriction of a function on Hn to Hn1 × Hn2 . In such a case, we say
that the operator D satisfies Condition C(k, λ, n1, n2).

For Z =

(
Z1 Z12
tZ12 Z2

)
∈ Hn with Z1 ∈ Hn1 , Z2 ∈ Hn2 , and Z12 ∈Mn1,n2(C), we sometimes

write D(F )
(
Z1 O
O Z2

)
instead of Res D(F (Z)). This condition on D can be roughly described

as the requirement that if F is a Siegel modular form of degree n of weight k, then Res(D(F ))
is a Siegel modular form of weight detk ⊗ρni,λ for each variable Zi for i = 1, 2. Here, if 2k ≥ n,
the condition that ρ1 and ρ2 correspond to the same λ is a necessary and sufficient condition
for the existence of D ([11]). We note that such a differential operator is uniquely determined
up to constant if k ≥ n1 + n2.

Now, we consider some special type of λ. We assume that λ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0). We

assume that λ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0). Let S be a 2m× 2m symmetric matrix of variables. Let

Dν
m,α be the differential operator in [5, (1.14)]. Then, for any holomorphic function F on Hn

and any (g1, g2) ∈ Spm(R)× Spm(R),
Res (Dl

m,k(F |k[ι(g1, g2)]) = (Res Dl
m,k(F ))|detk+l,detk+l [g1, g2],

and there exists a polynomial P̃m,k,k+l such that Dl
m,k = P̃m,k,k+l(∂W ) , where W = (wij)

denotes the variables of H2m.
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Now we review realization of representations of GLn1(C) × GLn2(C) by bideterminants.
Let U , V be m × n1 and m × n2 matrices of independent variables respectively. Let λ =
(l, . . . , l, 0, . . . , 0) such that depth(λ) = m. For integers n1 and n2 such that n1, n2 ≥ m, put

k1
′ = (

m︷ ︸︸ ︷
l, . . . , l,

n1−m︷ ︸︸ ︷
0, . . . , 0) and k2

′ = (

m︷ ︸︸ ︷
l, . . . , l,

n2−m︷ ︸︸ ︷
0, . . . , 0), and let C[U, V ]k′

1,k
′
2
be the vector space

defined in Section 2. Then, we can take C[U, V ]k′
1,k

′
2
as a representation space of ρn1,λ⊗ρn2,λ

as explained in Section 2. We denote by U the following 2m× n matrix, where n = n1 + n2:

U =

(
U 0
0 V

)
.

Then, by [2, Proposition 5.2], we obtain the following proposition.

Proposition 5.1. Notation being as above, consider λ = (l, . . . , l, 0, . . . , 0) such that depth(λ) =
m. For a partition (n1, n2) of n = n1 + n2, we assume that m ≤ min(n1, n2). Let T be an
n × n symmetric matrix. Then for Qk,λ,n1,n2(T ) = Pm,k,k+l(UT tU), the differential operator
Dk,λ,n1,n2 = Qk,λ,n1,n2(∂Z) satisfies Condition C(k, λ, n1, n2).

Remark 5.2. By Proposition 5.1, the operator Res Dk,λ,n1,n2 sends M∞
k (Γ (n1+n2)) (resp.

Mk(Γ
(n1+n2))) toM∞

detk ⊗ρn1,λ
(Γ (n1))⊗M∞

detk ⊗ρn2,λ
(Γ (n2)) (resp. Mdetk ⊗ρn1,λ

(Γ (n1))⊗Mdetk ⊗ρn2,λ
(Γ (n2))).

In particular, Dk,λ,n1,n2En1+n2,k

((
Z1 O
O Z2

)
, s
)
= (Res Dk,λ,n1,n2En1+n2,k(∗, s))(Z1, Z2) belongs

to M∞
detk ⊗ρn1,λ

(Γ (n1)) ⊗ M∞
detk ⊗ρn2,λ

(Γ (n2)), and is slowly increasing as function of Z1 and

Z2. Moreover, if l > 0 and n1 = m, (Res Dk,λ,m,n2)(Mk(Γ
(m+n2))) ⊂ Sdetk ⊗ρm,λ

(Γ (m)) ⊗
Mdetk ⊗ρn2,λ

(Γ (n2)).

For our later purpose, we give an explicit formula forQk,λ,n1,n2 in the case λ = (2, 2, 2, 0, . . . , 0)

and min(n1, n2) ≥ 3. Let T =

(
R W
tW S

)
be a symmetric matrix of variables of size 6. Define

P0(T ) = −(detW )2,

P1(T ) =
3∑

i1=1

∑
4≤i2<i3≤6,1≤i4<i5<i6≤6
{i4,i5,i6}∩{i1,i2,i3}=∅

(−1)i1+i2+i3 det

(
T

(
i1 i2 i3
1 2 3

))
det

(
T

(
i4 i5 i6
4 5 6

))
,

P3(T ) = detR detS,

P2(T ) = detT − P0(T )− P1(T )− P3(T ),

and

Q2
3,k(T ) =

2(k − 1)(2k − 3)(k − 2)

3
P0(T ) +

(k − 1)(2k − 3)

3
P1(T ) +

2(k − 1)

3
P2(T ) + P3(T ).

Remark 5.3. There is a misprint in [16]. The inequality ‘4 < i2 < i3 ≤ 6’ on page 15, line
12 should read ‘4 ≤ i2 < i3 ≤ 6’.

Then, by [16, Section 4], we have the following lemma.

Lemma 5.4. Let λ = (2, 2, 2, 0, . . . , 0). Let U and V be 3 × n1 and 3 × n2 matrices of

variables, respectively. Put U =

(
U 0
0 V

)
. Then we have

Q2
3,k = c(k)P3,k,k+2,
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and therefore,
Q2

3,k(UT tU) = c(k)Qk,λ,n1,n2(T ),

where c(k) is a non-zero rational number and in particular, c(k) belongs to Z×
(p) for any prime

number p > 2k + 4.

Let n1, n2 be positive integers such that n1 ≤ n2. Let λ be a dominant integral weight
such that depth(λ) ≤ n1. For an integer r such that depth(λ) ≤ r, we put ρr = detk ⊗ρr,λ.
For a Hecke eigenform f ∈ Sρr(Γ

(r)) we define D(s, f) as

D(s, f) = ζ(s)−1

r∏
i=1

ζ(2s− 2i)−1L(s− r, f, St).

For any polynomial Q(U) with complex coefficients, we denote by Q(U) = Q(U) the poly-
nomial obtained by changing the coefficients of Q(U) by the complex conjugates. For any

function f , we write (θf)(Z) = f(−Z). This means that if f is a Fourier series of the
following form

f(Z) =
∑
T

a(T )e(tr(TZ))

with a(T ) = a(T )(U) a polynomial in U , then we have

(θf)(Z) =
∑
T

a(T )e(tr(TZ)).

So if we take a(T ) to be real, we just have θf = f .
The next theorem is a pullback formula due to [2, Theorem 5.6].

Theorem 5.5. Let λ = (l, . . . , l, 0, . . . , 0), n1, n2, k and Dk,λ,n1,n2 be those in Proposition 5.1.
Besides we assume that k is even and n2 ≥ n1. Let s ∈ C such that 2Re(s)+k > n1+n2+1.
Then for any Hecke eigenform f ∈ Sρn1

(Γ (n1)) we have(
f,Dk,λ,n1,n2En1+n2,k

((∗ O
O −W

)
, s
))

= c(s, ρn1)D(2s+ k, f)[f ]
ρn2
ρn1

(W, s),

where c(s, ρn1) is a function of s depending on ρn1 but not on n2.

Then we have a weak type of the pullback formula. Let k and l be non-negative integers.

For the dominant integral λ = (

m︷ ︸︸ ︷
l, . . . , l, 0, . . . , 0) of depth m0 and integers n1, n2 such that

m0 ≤ n1 ≤ n2, let ρn1 = detk ⊗ρn1,λ and ρn2 = detk ⊗ρn2,λ be the representations of GLn1(C)
and GLn2(C), respectively, as above. We note that m0 = 0 or m0 = m according as l = 0 or
l > 0. Moreover, let Dk,λ,n1,n2 be the differential operator corresponding to the polynomial
Qk,λ,n1,n2 in Proposition 5.1. The following theorem can be proved in the same way as [2,
Theorem 5.7] using Theorem 5.5 (see also [15]).

Theorem 5.6. Let the notation be as above. We define a subspace M̃ρn1
(Γ (n1)) ofMρn1

(Γ (n1))
as

M̃ρn1
(Γ (n1)) = {F ∈Mρn1

(Γ (n1)) | Φn1
m (F ) ∈ Sρm(Γ

(m))}
orMρn1

(Γ (n1)) according as l > 0 or l = 0. Let {fm,j}1≤j≤d(m) be a basis of Sρm(Γ
(m)) consist-

ing of Hecke eigenforms, and take Hecke eigenforms {Fj}d(m)+1≤j≤d so that {[fm,j]
ρn1
ρm (1 ≤

j ≤ d(m)), Fj (d(m) + 1 ≤ j ≤ d)} forms a basis of M̃ρn1
(Γ (n1)). Suppose that k ≥
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max((n1 + n2 + 1)/2, [3m/2 + 2]) and that neither k = (n1 + n2 + 2)/2 ≡ 2 mod 4 nor
k = (n1 + n2 + 3) ≡ 2 mod 4. Then

Dk,λ,n1,n2En1+n2,k

(
Z O
O W

)
= πm(m+1)/2c̃(0, ρm)

d(m)∑
j=1

D(k, fm,j)

(fm,j, fm,j)
[fm,j]

ρn1
ρm (Z)(U)[θfm,j]

ρn2
ρm (W )(V )

+
d∑

j=d(m)+1

Fj(Z)(U)Gj(W )(V ) (Z ∈ Hn1 ,W ∈ Hn2),

where Gj is a certain element ofMρn2
(Γ (n2)). Here, U and V are m×n1 and m×n2 matrices

of variables, respectively, and we regard [fm,j]
ρn1
ρm and Fj (resp. [θfm,j]

ρn2
ρm and Gj) as elements

of Hol[U ]k′
n1

(resp. Hol[V ]k′
n2
). Moreover c(0, ρm) is a rational number, and in particular it

is p-adic unit for a prime number p such that p > 2(k + l).

6. Congruence for Klingen-Eisenstein lifts

To explain why Conjecture 4.6 is reasonable, we consider congruence for Klingen-Eisenstein

series, which is a generalization of [2, Section 6] and [22]. For λ = (

m0︷ ︸︸ ︷
k − l, . . . , k − l, 0, 0 . . .)

and a positive integer m such that k ≥ l and m ≥ m0, put k
′
m = (

m0︷ ︸︸ ︷
k − l, . . . , k − l,

m−m0︷ ︸︸ ︷
0, . . . , 0).

Let (ρm,λ, Vm,λ) be an irreducible polynomial representation of GLm(C) of highest weight k′
m

and ρm = detl ⊗ρm,λ.
Let U and V bem0×n1 andm0×n2 matrices of variables, respectively, where min(n1, n2) ≥

m0. Then we can take Vn1,λ = C[U ]k′
n1
, Vn2,λ = C[V ]k′

n2
and every element F ofMρn1

(Γ (n1))⊗
Mρn2

(Γ (n2)) is expressed as

F (Z1, Z2) =
∑

A1∈Hn1 (Z)≥0,A2∈Hn2 (Z)≥0

c(A1, A2;F )(U, V )e(tr(A1Z1 + A2Z2))

with c(A1, A2;F )(U, V ) ∈ C[U, V ]k′
n1

,k′
n2
. For a subring R of C, we denote by (Mρn1

(Γ (n1))⊗
Mρn2

(Γ (n2)))(R) the submodule of Mρn1
(Γ (n1))⊗Mρn2

(Γ (n2)) consisting of all F ’s such that
c(A1, A2;F )(U, V ) ∈ R[U, V ]k′

n1
,k′

n2
for all A1 ∈ Hn1(Z)≥0, A2 ∈ Hn2(Z)≥0. We also note that

every element F of Mρn1
(Γ (n1))⊗ Vn2,λ is expressed as

F (Z1) =
∑

A1∈Hn1 (Z)≥0

c(A1;F )(U, V )e(tr(A1Z1))

with c(A1;F )(U, V ) ∈ C[U, V ]k′
n1

,k′
n2
. We then define a submodule (Mρn1

(Γ (n1))⊗ Vn2,λ)(R)

of Mρn1
(Γ (n1)) ⊗ Vn2,λ consisting of all F ’s such that c(A1;F )(U, V ) ∈ R[U, V ]k′

n1
,k′

n2
for all

A1 ∈ Hn1(Z)≥0.
For positive integers n and l, put

Z(n, l) = ζ(1− l)

[n/2]∏
j=1

ζ(1 + 2j − 2l).

We define Ẽn,l as

Ẽn,l(Z) = Z(n, l)En,l(Z)
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and we set

Ek,l,n1,n2(Z1, Z2) = (k − l)!(2π
√
−1)−m0(k−l)Dl,λ,n1,n2Ẽn1+n2,l

(
Z1 O
O Z2

)
.

Moreover, for positive integers m, l and a Hecke eigenform F ∈ Sk(Γ
(m0)) put

Cm,l(F ) =
Z(m, l)

Z(2m0, l)
L(l −m0, F, St).

We also use the same symbol Cm,l(f) to denote the value
Z(m, l)

Z(2m0, l)
L(l − m0, F, St) for a

Hecke eigenform f ∈ Sρm0
(Γ (m0)). As stated before, we have the following isomorphism:

ι : Sk(Γ
(m0)) ∋ F 7→ F̃ := (detU)k−lF ∈ Sρm0

(Γ (m0)),(1)

where U is m0 ×m0 matrix of variables. Then we note that Cm,l(F̃ ) = Cm,l(F ) for a Hecke
eigenform F ∈ Sk(Γ

(m0)).
Now, for our later purpose, we rewrite a special case of Theorem 5.6 as follows.

Proposition 6.1. Let n1, n2 be integers such that m0 ≤ n1 ≤ n2 and let k, l be even positive
integers such that k ≥ l. Then we have

Ek,l,n1,n2(Z1, Z2) = γm0

d(m0)∑
j=1

Cn1+n2,l(fm0,j)[fm0,j]
ρn1
ρm0

(Z1)(U)[θfm0,j]
ρn2
ρm0

(Z2)(V )

+
d∑

j=d(m0)+1

Fj(Z1)(U)G̃j(Z2)(V ),

where γm0 is a certain rational number which is p-unit for any prime number p > 2k, and

G̃j(Z2)(V ) is an element of Mρn2
(Γ (n2)).

We write Ek,l,n1,n2(Z1, Z2) as

Ek,l,n1,n2(Z1, Z2) =
∑

N∈Hn2

g
(n1)
(k,l,n1,n2),N

(Z1)e(tr(NZ2)).

Then g
(n1)
(k,l,n1,n2),N

belongs to Mρn1
(Γ (n1)) ⊗ Vn2,λ. To consider congruence between Klingen-

Eisenstein lift and another modular form of the same weight, we rewrite the above proposition
as follows:

Corollary 6.2. Under the same notation and the assumption as above, let N ∈ Hn2(Z)>0.
Then,

g
(n1)
(k,l,n1,n2),N

(Z1) = γm0

d(m0)∑
j=1

Cn1+n2,l(fm0,j)[fm0,j]
ρn1
ρm0

(Z1)(U)a(N, [fm0,j]
ρn2
ρm0

)(V )

+
d∑

j=d(m0)+1

Fj(Z1)(U)a(N, G̃j)(V ).



20 H. KATSURADA AND C.-H. LEE

Observe that the first term on the right-hand side of the above is invariant if we multiply
fm0,j by an element of C×.

For T1 ∈ Hn1 and T2 ∈ Hn2 , put

ϵk,l,n1,n2(T1, T2)(U, V ) =
∑

R∈Mn1,n2 (Z)

a
((

T1 R/2
tR/2 T2

)
, Ẽn1+n2,l

)
(2)

×Ql,λ,n1,n2

((
T1 R/2

tR/2 T2

)
, U, V

)
,

where Ql,λ,n1,n2 is the polynomial in Proposition 5.1 corresponding to Dl,λ,n1,n2 . Then we
have

Ek,l,n1,n2(Z1, Z2) =
∑

T1∈Hn1 (Z)≥0,T2∈Hn2 (Z)≥0

ϵk,l,n1,n2(T1, T2)(U, V )e(tr(T1Z1 + T2Z2)),

and therefore

g
(n1)
(k,l,n1,n2),N

(Z1) =
∑

T∈Hn1 (Z)

ϵk,l,n1,n2(T,N)(U, V )e(tr(TZ1)).

Therefore, in view of [2, Proposition 6.5], similarly to [2, Corollary 6.7], we prove the following
proposition:

Proposition 6.3. For each N ∈ Hn2(Z)>0 let g
(n1)
N be that defined above. Then

g
(n1)
(k,l,n1,n2),N

(Z1) ∈ (Mρn1
(Γ (n1))⊗ Vn2,λ)(Q)

and moreover
g
(n1)
(k,l,n1,n2),N

(Z1) ∈ (Mρn1
(Γ (n1))⊗ Vn2,λ)(Z(p))

for any prime number p > 2k.

The following propositions can be proved in the same way as [2, Proposition 6.8] and [2,
Proposition 6.9], respectively.

Proposition 6.4. Let the notation and the assumptions be as in Theorem 5.6, and let
m0 ≤ m. Then for any Hecke eigenform f in Sρm0

(Γ (m0))(Q(f)), [f ]ρmρm0
∈Mρm(Γ

(m))(Q(f)).

Proposition 6.5. Let the notation and the assumption be as in Proposition 6.1. Let f be a
Hecke eigenform in Sk(Γ

(m0)). Then, for any N ∈ Hn2(Z)>0 and N1 ∈ Hn1(Z)>0, the value

Cn2+m0,l(f)a(N, [f̃ ]
ρn2
ρm0

)(V )a(N1, f) belongs to Q(f)[V ]k′
m0
, where f̃ is that in (1).

Theorem 6.6. Let k and l be positive even integers such that k ≥ l ≥ [3m0/2+2] and put k =

(

m0︷ ︸︸ ︷
k, . . . , k,

n2−m0︷ ︸︸ ︷
l, . . . , l) and M̃k(Γ

(n2)) = M̃ρn2
(Γ (n2)). Let F ∈ Sk(Γ

(m0)) be a Hecke eigenform,

and p a prime ideal of Q(F ) with pp > 2k. Suppose that p divides |a(A1, F )|2L(l−m0, F, St)
and does not divide

C2n2,l(F )a(A1, F )a(A, [F ]k)

for some A1 ∈ Hm0(Z)>0 and A ∈ Hn2(Z)>0, where [F ]k = [F̃ ]
ρn2
ρm0

as stated in Section 2.

Then there exists a Hecke eigenform G ∈ M̃k(Γ
(n2)) such that G is not a constant multiple

of [F ]k and

G ≡ev [F ]
k (mod p).
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Proof. The assertion in the case k = l has been proved in [22] in more general setting and
the other case can also be proved using the same argument as in the proof of [2, Theorem
6.11]. □

Remark 6.7. The case n1 = 1, n2 = 2 and m0 = 1 is investigated by [32] in more precise
way.

Let k = (

m0︷ ︸︸ ︷
k, . . . , k,

n2−m0︷ ︸︸ ︷
l, . . . , l) and k′ = (

m0︷ ︸︸ ︷
k − l, . . . , k − l,

n2−m0︷ ︸︸ ︷
0, . . . , 0) as above. To confirm the

condition in Theorem 6.6, we give a formula for computing L(l−m0, F, St)a(T, F )a(N, [F ]k)
for a Hecke eigenform F in Sk(Γ

(m0)), T ∈ Hm0(Z)>0 andN ∈ Hn2(Z)>0. Let ϵk,l,m0,n2(T,N)(U, V )

be as in (2) and put gN = g
(m0)
(k,l,m0,n2),N

. Recall that U and V arem0×m0 andm0×n2 matrices,

respectively, of variables. We note that ϵk,l,m0,n2(T,N)(U, V ) can be expressed as

(3) ϵk,l,m0,n2(T,N)(U, V ) = (detU)k−lϵk,k(T,N)(V )

with ϵk,k(T,N) = ϵk,k(T,N)(V ) ∈ C[V ]k′ . Then gN is expressed as

gN(W ) =
∑

T∈Hm0 (Z)

(detU)k−lϵk,k(T,N)e(tr(TW )).

Now, for a positive integer m, let T (m) be the element of Lm0 defined in Section 3. For a
positive integer m = p1 · · · pr with pi a prime number, we define the Hecke operator T (m) =
T (p1) · · ·T (pr). We make the convention that T (1) = T (1). We note that T (m) = T (m) if
p1, . . . , pr are distinct, but in general it is not. For each m ∈ Z>0 and N ∈ Hm0(Z)>0, write
gN |T (m)(W ) as

gN |T (m)(W ) =
∑

T∈Hm0 (Z)>0

(detU)k−lϵk,k(m,T,N)e(tr(TW ))

with ϵk,k(m,T,N) ∈ C[V ]k′ .
Let Mk,l = Mk(Γ

(m0)) or Sk(Γ
(m0)) according as k = l or not, and let {Fj}dj=1 be a basis

of Mk,l consisting of Hecke eigenforms. Furthermore write

Fj|T (m)(z) = λj,mFj(z).

Then the following proposition follows from Corollary 6.2.

Proposition 6.8. Notation being as above, we have

ϵk,k(m,T,N) =
d∑

j=1

λj,ma(T, Fj)B(Fj)

for any N ∈ Hn2(Z)>0, T ∈ Hm0(Z)>0 and m ∈ Z>0, where B(Fj) is a certain element of
C[V ]k′, and in particular we have

B(Fj) = γm0Cm0+n2,l(Fj)a(N, [Fj]k)

if Fj ∈ Sk(Γ
(m0)). Here, γm0 is the rational number in Proposition 6.1.

We note that C2n2,l(F ) =
∏n2

i=[(m0+n2)/2]+1 ζ(2i + 1− 2l)Cm0+n2,l(F ) for a Hecke eigenform

F in Sk(Γ
(m0)). Hence by the above proposition, we have the following formula:
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Proposition 6.9. For N1 ∈ Hm0(Z)>0, N ∈ Hn2(Z)>0 let em = ϵk,k(m,N1, N). Let F be
a Hecke eigenform in Sk(Γ

(m0)) and {Fj}dj=1 a basis of Mk,l consisting of Hecke eigen-
forms such that F1 = F . For positive integers m1, . . . ,md put ∆ = ∆(m1, . . . ,md) =
det(λj,mi

)1≤i,j≤d. Then,

∆γm0C2n2,l(F )a(N1, F )a(N, [F ]k) =

n2∏
i=[(m0+n2)/2]+1

ζ(2i+ 1− 2l)

∣∣∣∣∣∣
e1 λ1,2 . . . λ1,d
...

...
...

...
ed λd,2 . . . λd,d

∣∣∣∣∣∣ .
Corollary 6.10. Let the notation and the assumption as above. Let p be a prime ideal of
Q(F ) such that pp > 2k. Suppose that p divides neither

∏n2

i=[(m0+n2)/2]+1 ζ(2i + 1 − 2l) nor∣∣∣∣∣∣
e1 λ1,2 . . . λ1,d
...

...
...

...
ed λd,2 . . . λd,d

∣∣∣∣∣∣. Then, p does not divide C2n2,l(F )a(N1, F )a(N, [F ]k).

Proof. By Proposition 3.2, ∆ is an algebraic integer, and by the assumption, γm0 is a p-unit.
Thus the assertion holds. □

The following lemma will be used in the next section.

Lemma 6.11. Let N ∈ H5(Z)>0. Then for any T ∈ H3(Z)>0 and a prime number p, we
have the following formula for ϵk,k(m,T,N):

ϵk,k(p, T,N) =ϵk,k(pT,N) + p3k−6ϵk,k(p
−1T,N)

+ pk−3
∑

D∈GL2(Z)diag(1,p,p)GL2(Z)/GL2(Z)

ϵk,k(p
−1T [D], N)

+ p2k−5
∑

D∈GL2(Z)diag(1,1,p)GL2(Z)/GL2(Z)

ϵk,k(p
−1T [D], N).

Here we make the convention that ϵk,k(S,N) = 0 if S is not half-integral.

Proof. The assertion follows from [1, Exercise 4.2.10]. □

Let V be the 3× 5 matrix of variables stated above.

Theorem 6.12. Let k = (k, k, k, l, l) with l = k or k − 2. Let A0 ∈ H3(Z)>0 and A1 ∈
H5(Z)>0. Moreover, put

Pk

((
A0 R/2

tR/2 A1

))
(V ) =


1 if l = k

c(k − 2)−1Q2
3,k−2

(( A0 RtV/2

V tR/2 V A1
tV

))
if l = k − 2.

Here, Q2
3,k−2 is the polynomial defined before Lemma 5.4, and c(k−2) is the non-zero rational

number in Lemma 5.4. Then

ϵk,k(A0, A1)(V ) =
∑

R∈M3,5(Z)(
A0 R/2

tR/2 A1

)
≥0

Pk

((
A0 R/2

tR/2 A1

))
(V )a

((
A0 R/2

tR/2 A1

)
, Ẽ8,l

)
.
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Proof. We prove the assertion in the case l = k − 2. Let λ = (2, 2, 2, 0, 0). Let Qk−2,λ,3,5 be
the polynomial in (2) with m0 = n1 = 3 and n2=5. By Lemma 5.4,

c(k − 2)Qk−2,λ,3,5(

(
A0 R/2

tR/2 A1

)
, U, V ) = Q2

3,l(UT tU),

where U =

(
U 0
0 V

)
. Then, by (3) we have

c(k − 2)Qk−2,λ,3,5(

(
A0 R/2

tR/2 A1

)
, U, V ) = (detU)k−lPk

((
A0 R/2

tR/2 A1

))
(V ).

□

We have an explicit formula [21] for a(T, Ẽl,m) for any semi-positive definite half-integral
matrix T over Z, and a Mathematica package [25] based on [8] for computing it. Therefore,
by using Proposition 6.9 and Theorem 6.12 we can compute the Fourier coefficients of the
Klingen-Eisenstein series in question.

7. Main results

In this section, we prove some cases of Conjecture 4.6, thereby proving the corresponding
case of Harder’s conjecture. For l = 12, 16, 20, 22, 26 let ϕl be the unique primitive form
in Sl(SL2(Z)). We have the following Fourier coefficients for these forms: a(2, ϕ12) = −24,
a(2, ϕ16) = 216, a(2, ϕ20) = 456, a(2, ϕ22) = −288, and a(2, ϕ26) = −48. Let ϕ±

24 be the
unique primitive form in S24(SL2(Z)) such that a(2, ϕ±

24) = 12(45±
√
144169). Let O be the

ring of integers in Q(ϕ+
24). Then we have O = Z[θ], where θ = 1+

√
144169
2

.
From the numerical tables in [31] based on [30] (see also [7]), we have

dimC S14(Γ
(1)) = 0, dimC S(14,14,14)(Γ

(3)) = 1,

dimC S(14,10)(Γ
(2)) = 1, dimC S(14,14,14,12)(Γ

(4)) = 2,

dimC S(14,14)(Γ
(2)) = 1, dimC S(14,14,14,14)(Γ

(4)) = 3,

dimC S(21,7)(Γ
(2)) = 1, dimC S(14,14,14,12,12)(Γ

(5)) = 2,

dimC S(23,5)(Γ
(2)) = 1, dimC S(14,14,14,14,14)(Γ

(5)) = 3.(4)

For each (k, j) = (5, 18), (7, 14), or (10, 4) let Gk+j,k be a Hecke eigenform in S(k+j,k)(Γ
(2))

uniquely determined up to constant multiple. LetG14,14,12 be a Hecke eigenform in S(14,14,12)(Γ
(3))

uniquely determined up to constant multiple.

7.1. The (k, j) = (7, 14) case. We consider Conjecture 4.6 with (k, j) = (7, 14) and n = 2.
Let f = ϕ26 and g = ϕ12. The prime number 97 divides the ratio

L(k + j, f)

L(k + j/2 + 1, f)
=

L(21, f)

L(15, f)
= 5 · 97

(cf. [26, p. 383] and [33, p. 240]; note that there appears to be a misprint for the value r4 in
[26] regarding the exponent of 5).

Let k = (14, 14, 14, 12, 12). Then, by (4) and Theorems 4.3, 4.4 and 4.5, we have

S14(Γ
(3)) = ⟨M14

3 (f, g)⟩C,

S(14,14,14,12)(Γ
(4)) = ⟨AII

4 (ϕ+
24, G14,10),A

II
4 (ϕ−

24, G14,10)⟩C,
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and

S(14,14,14,12,12)(Γ
(5)) = ⟨Mk

5 (ϕ16,M
14
3 (f, g)),Ak

5 (G21,7, g)⟩C.

Hence we have M̃k(Γ
(5)) = ⟨Sk⟩C, where

Sk =
{
Mk

5 (ϕ16,M
14
3 (f, g)),Ak

5 (G21,7, g), [A
II
4 (ϕ+

24, G14,10)]
k,

[AII
4 (ϕ−

24, G14,10)]
k, [M14

3 (f, g)]k
}

(cf. Theorems 5.6 and 6.6 for the definition of M̃k). Here, we give a list of the standard
L-functions for F ∈ Sk.

F L(s, F, St)

Mk
5 (ϕ16,M

14
3 (f, g)) L(s, g, St)

∏2
i=1 L(s+ 14− i, f)

∏2
i=1 L(s+ 9− i, ϕ16)

Ak
5 (G21,7, g) L(s, g, St)

∏2
i=1 L(s+ 14− i, G21,7, Sp)

[AII
4 (ϕ+

24, G14,10)]
k L(s,G14,10, St)

∏2
i=1 L(s+ 13− i, ϕ+

24)ζ(s− 7)ζ(s+ 7)

[AII
4 (ϕ−

24, G14,10)]
k L(s,G14,10, St)

∏2
i=1 L(s+ 13− i, ϕ−

24)ζ(s− 7)ζ(s+ 7)

[M14
3 (f, g)]k L(s, g, St)

∏2
i=1 L(s+ 14− i, f)

∏2
i=1(ζ(s− 9 + i)ζ(s+ 9− i))

Table 1. Standard L-functions for F ∈ Sk, k = (14, 14, 14, 12, 12).

Let B1 =

 1 0 1/2
0 1 1/2
1/2 1/2 1

. Put

η =
∑

R∈M3,3(Z)(
B1 R/2

tR/2 B1

)
≥0

Q2
3,k

((
B1 R/2

tR/2 B1

))
a
((

B1 R/2
tR/2 B1

)
, Ẽ3,12

)
.

Then, by [16, Theorem 4.8], we have

|a(B1,M
14
3 (f, g)|2L(9,M14

3 (f, g), St) = dη

with d ∈ Z×
(97). Then, by a computation with Mathematica [34], we have

η = −6063676416 ≡ 0 mod 97,

and we see that 97 divides

|a(B1,M
14
3 (f, g)|2L(9,M14

3 (f, g), St).

Let A =


1 0 1/2 0 1/2
0 1 1/2 0 0
1/2 1/2 1 1/2 0
0 0 1/2 1 0
1/2 0 0 0 1

. Then, substituting V for

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 in The-

orem 6.12, by a computation with Mathematica

c(12)ϵ14,k(B1, A)
(1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

) = −1656777024

5
̸≡ 0 mod 97.
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Here c(12) is the non-zero rational number in Lemma 5.4. We note that c(12) belongs to
Z×

(97). Moreover, 97 does not divide ζ(−13). This implies that 97 does not divide

C10,12(M14
3 (f, g))a(B1,M

14
3 (f, g)a(A, [M14

3 (f, g)]k),

and, therefore by applying Theorem 6.6 with k = (14, 14, 14, 12, 12), m0 = 3 and n2 = 5,
there exists a Hecke eigenform H ∈ Sk such that H ̸= [M14

3 (f, g)]k and

H ≡ev [M
14
3 (f, g)]k mod 97.

Then, we have

L2(X,H, St) ≡ L2(X, [M
14
3 (f, g)]k, St) mod 97.(5)

Here, Lp(X,F, ·) denotes the p-th Euler factor for L(s, F, ·) as defined in Section 3.

F L2(X,F, St)

Mk
5 (ϕ16,M

14
3 (f, g))

(
1 + 23X

32 − 23X2

32 −X3
)(

1− 27X
32 + X2

2

)(
1 + 3X

29
+ X2

2

)
×
(
1− 27X

16 + 2X2
) (

1 + 3X
28

+ 2X2
)

Ak
5 (G21,7, g)

(
1 + 23X

32 − 23X2

32 −X3
)
L2(2

−12X,G21,7,Sp)L2(2
−13X,G21,7,Sp)

[AII
4 (ϕ+

24, G14,10)]
k (1− 27X)

(
1− X

27

) (
1− 3(22+θ)X

29
+ X2

2

)(
1− 3(22+θ)X

28
+ 2X2

)
L2(X,G14,10,St)

[AII
4 (ϕ−

24, G14,10)]
k (1− 27X)

(
1− X

27

) (
1 + 3(−23+θ)X

29
+ X2

2

)(
1 + 3(−23+θ)X

28
+ 2X2

)
L2(X,G14,10,St)

[M14
3 (f, g)]k (1 + 23X

32 − 23X2

32 −X3)(1− 28X)(1− 27X)(1− X
27
)(1− X

28
)

×(1 + 3X
29

+ X2

2 )(1 + 3X
28

+ 2X2)

Table 2. Euler 2-factors L2(X,F, St) for F ∈ Sk, k = (14, 14, 14, 12, 12).

Let p′1 and p′2 be prime ideals of O = Z[θ] such that p′1p
′
2 = (97), defined by ⟨97, θ + 33⟩

and ⟨97, θ − 34⟩ respectively. Recall that θ = 1+
√
144169
2

.
From Table 2, it is straightforward to identify the following irreducible factors of L2(X,F, St)

for F ∈ Sk, when considered modulo a prime of Z or Z[θ]:
L2(X,M

k
5 (ϕ16,M

14
3 (f, g)), St) ≡ (1−X)(3−X)(41−X)(45−X)(65−X)(69−X)

× (71−X)(2 + 65X +X2)(49 + 81X +X2) mod 97,

L2(X,A
k
5 (G21,7, g), St) ≡ (1−X)(3−X)(65−X)× (other factors) mod 97,

L2(X, [A
II
4 (ϕ+

24, G14,10)]
k, St) ≡ (31−X)(72−X)(49 + 12X +X2)(2 + 24X +X2)

× (other factors) mod p′1,

L2(X, [A
II
4 (ϕ+

24, G14,10)]
k, St) ≡ (31−X)(35−X)(61−X)(70−X)(72−X)(79−X)

× (other factors) mod p′2,

L2(X, [A
II
4 (ϕ−

24, G14,10)]
k, St) ≡ (31−X)(35−X)(61−X)(70−X)(72−X)(79−X)

× (other factors) mod p′1,
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L2(X, [A
II
4 (ϕ−

24, G14,10)]
k, St) = (31−X)(72−X)(49 + 12X +X2)(2 + 24X +X2)

× (other factors) mod p′2,

and

L2(X, [M
14
3 (f, g)]k, St) ≡ (1−X)(3−X)(31−X)(36−X)(41−X)(45−X)

× (62−X)(65−X)(69−X)(71−X)(72−X) mod 97.

This leads to the conclusion that F ∈ Sk\{Ak
5 (G21,7, g), [M

14
3 (f, g)]k} cannot be H. Con-

sequently, it must be the case that H is identical to Ak
5 (G21,7, g).

Theorem 7.1. We have

Ak
5 (G21,7, g) ≡ev [M

14
3 (f, g)]k mod 97.

By Theorem 4.8, we obtain the following:

Corollary 7.2. Conjecture 4.2 holds for (k, j) = (7, 14) with f = ϕ26, F = G21,7 and
p = (97).

7.2. The (k, j) = (5, 18) case. We consider Conjecture 4.6 with (k, j) = (5, 18) and n = 2.
Let f = ϕ26 and g = ϕ12. The prime number 43 divides

L(k + j, f)

L(k + j/2 + 1, f)
=

L(23, f)

L(15, f)
= 22 · 3 · 11 · 43

(cf. [26, p. 383]).
Let k = (14, 14, 14, 14, 14) and k′ = (14, 14, 14). Then, by (4) and by Theorems 4.3, 4.4

and 4.5, we have

S14(Γ
(1)) = {0}, S14(Γ

(2)) = ⟨I2(f)⟩C, S14(Γ
(3)) = ⟨M14

3 (f, g)⟩C,

S14(Γ
(4)) = ⟨M14

4 (ϕ22, I2(f)), I4(ϕ
+
24), I4(ϕ

−
24)⟩C,

and

S14(Γ
(5)) = ⟨Mk

5 (ϕ20,M
14
3 (f, g)),K5(ϕ22, G14,14,12),A

k
5 (G23,5, g)⟩C.

Hence we have

Mk′(Γ (3)) =M14(Γ
(3)) = ⟨E3,14, [I2(f)]

k′
,M14

3 (f, g)⟩C
and M̃k(Γ

(5)) =Mk(Γ
(5)) = ⟨Sk⟩C, where

Sk =
{
E5,14, [I2(f)]

k, [M14
3 (f, g)]k, [M14

4 (ϕ22, I2(f))]
k, [I4(ϕ

+
24)]

k, [I4(ϕ
−
24)]

k,

Mk
5 (ϕ20,M

14
3 (f, g)),K5(ϕ22, G14,14,12),A

k
5 (G23,5, g)

}
(cf. Theorems 5.6 and 6.6 for the definition of M̃k). Here, we give a list of the standard
L-functions for F ∈ Sk.
Let B1 and A be as in (I), and

B2 =

1 0 0
0 1 0
0 0 1

 and B3 =

 1 1/2 0
1/2 1 0
0 0 2

 .
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F L(s, F, St)

E5,14 ζ(s)
∏5

i=1(ζ(s− 14 + i)ζ(s+ 14− i))

[I2(f)]
k

∏2
i=1 L(s+ 14− i, f)ζ(s)

∏3
i=1(ζ(s− 12 + i)ζ(s+ 12− i))

[M14
3 (f, g)]k L(s, g, St)

∏2
i=1 L(s+ 14− i, f)

∏2
i=1(ζ(s− 11 + i)ζ(s+ 11− i))

[M14
4 (ϕ22, I2(f))]

k
∏2

i=1 L(s+ 14− i, f)ζ(s)
∏2

i=1 L(s+ 12− i, ϕ22)ζ(s− 9)ζ(s+ 9)

[I4(ϕ
+
24)]

k ζ(s)
∏4

i=1 L(s+ 14− i, ϕ+
24)ζ(s− 9)ζ(s+ 9)

[I4(ϕ
−
24)]

k ζ(s)
∏4

i=1 L(s+ 14− i, ϕ−
24)ζ(s− 9)ζ(s+ 9)

Mk
5 (ϕ20,M

14
3 (f, g)) L(s, g, St)

∏2
i=1 L(s+ 14− i, f)

∏2
i=1 L(s+ 11− i, ϕ20)

K5(ϕ22, G14,14,12) L(s,G14,14,12, St)
∏2

i=1 L(s+ 12− i, ϕ22)

Ak
5 (G23,5, g) L(s, g, St)

∏2
i=1 L(s+ 14− i, G23,5, Sp)

Table 3. Standard L-functions for F ∈ Sk, k = (14, 14, 14, 14, 14).

Let F1 = M14
3 (f, g)]k

′
, F2 = E3,14, F3 = [I2(f)]

k′
. For a prime number q and i = 1, 2, 3, put

λi(q) = λFi
(T (q)), and ∆ =

∣∣∣∣∣∣
1 1 1

λ1(2) λ2(2) λ3(2)
λ1(3) λ2(3) λ3(3)

∣∣∣∣∣∣. By [1, Exercise 4.3.17] and [27, (8.1)], we

have

λ1(2) = −293760, λ1(3) = 486349920,

λ2(2) = (1 + 213)(1 + 212)(1 + 211), λ2(3) = (1 + 313)(1 + 312)(1 + 311),

and

λ3(2) = (−48 + 213 + 212)(1 + 211), λ3(3) = (−195804 + 313 + 312)(1 + 311).

Therefore we have ∆ ̸≡ 0 mod 43.
For B ∈ H3(Z)>0 put

η(B1, B) =
∑

R∈M3,3(Z)(
B1 R/2

tR/2 B

)
≥0

a
((

B1 R/2
tR/2 B

)
, Ẽ3,14

)
.

η1 = η(B1, B1), η2 = η(B1, 2B1) + 211η(B1, B2),

and

η3 = η(B1, 3B1) + 4× 311η(B1, B3).

Then, by using the same method as in [16, Theorem 4.8] combined with Lemma 6.11, we
have

|a(B1,M
14
3 (f, g)|2L(11,M14

3 (f, g), St) = d1

∣∣∣∣∣∣
η1 1 1
η2 λ2(2) λ3(2)
η3 λ2(3) λ3(3)

∣∣∣∣∣∣∆−1

with d1 ∈ Z×
(43). By using Mathematica,

η(B1, B1) = −2687696148060

23
,

η(B1, 2B1) = −94888664687216034861660

23
,
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η(B1, 3B1) = −205845507642515587623184635360

23
,

η(B1, B2) = −970186595803740

23
,

η(B1, B3) = −3853803861382600440

23
,

and ∣∣∣∣∣∣
η1 1 1
η2 λ2(2) λ3(2)
η3 λ2(3) λ3(3)

∣∣∣∣∣∣ = −3473745417074087386524297436594176000 ≡ 0 mod 43.

This implies that 43 divides

|a(B1,M
14
3 (f, g)|2L(11,M14

3 (f, g), St).

Let

e1,k = ϵ14,k(B1, A),

e2,k = ϵ14,k(2B1, A) + 211ϵ14,k(B2, A),

e3,k = ϵ14,k(3B1, A) + 4× 311ϵ14,k(B3, A).

Then, by Proposition 6.9, we have

∆C10,14(M14
3 (f, g))a(B1,M

14
3 (f, g)a(A, [M14

3 (f, g)]k)

= d1ζ(−17)

∣∣∣∣∣∣
e1,k 1 1
e2,k λ2(2) λ3(2)
e3,k λ2(3) λ3(3)

∣∣∣∣∣∣
with d1 ∈ Z×

(43). By a computation with Mathematica,

ϵ14,k(B1, A) =
1226172627792

5
,

ϵ14,k(2B1, A) = −1754669488958870503824

55
,

(6) ϵ14,k(3B1, A) = −3609821538245110292761071744

55

ϵ14,k(B2, A) =
952461422270064

55

ϵ14,k(B3, A) = −50292943071075936

5
,

and ∣∣∣∣∣∣
e1,k 1 1
e2,k λ2(2) λ3(2)
e3,k λ2(3) λ3(3)

∣∣∣∣∣∣ = −13063602201123519956013021344563200000

11
̸≡ 0 mod 43.

Moreover 43 does not divide ζ(−17). This implies that 43 does not divide

C10,14(M14
3 (f, g))a(B1,M

14
3 (f, g))a(A, [M14

3 (f, g)]k).
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Therefore, by Theorem 6.6 with k = (14, 14, 14, 14, 14), m0 = 3 and n2 = 5, there is a Hecke
eigenform H ∈ Sk such that H ̸= [M14

3 (f, g)]k and

H ≡ev [M
14
3 (f, g)]k mod 43.

We note that p := 43O is a prime ideal of O. We have

L3(X,H, St) ≡ L3(X, [M
14
3 (f, g)]k, St) mod p.

F L2(X,F, St)
E5,14 (1−X)

∏13
i=9(1− 2iX)(1− 2−iX)

[I2(f)]
k (1 + 3X

29
+ X2

2 )(1 + 3X
28

+ 2X2)(1−X)
∏11

i=9(1− 2iX)(1− 2−iX)

[M14
3 (f, g)]k (1 + 23X

32 − 23X2

32 −X3)(1 + 3X
29

+ X2

2 )(1 + 3X
28

+ 2X2)
∏10

i=9(1− 2iX)(1− 2−iX)

[M14
4 (ϕ22, I2(f))]

k (1− 29X)(1−X)(1− X
29
)(1 + 3X

29
+ X2

2 )(1 + 9X
64 + X2

2 )

×(1 + 3X
28

+ 2X2)(1 + 9X
32 + 2X2)

[I4(ϕ
+
24)]

k (1− 29X)(1−X)(1− X
29
)
∏4

i=1 L2(2
−14X,ϕ+

24)

[I4(ϕ
−
24)]

k (1− 29X)(1−X)(1− X
29
)
∏4

i=1 L2(2
−14X,ϕ−

24)

Mk
5 (ϕ20,M

14
3 (f, g)) (1 + 23X

32 − 23X2

32 −X3)(1− 57X
27

+ X2

2 )(1 + 3X
29

+ X2

2 )

×(1− 57X
64 + 2X2)(1 + 3X

28
+ 2X2)

K5(ϕ22, G14,14,12) (1 + 9X
64 + X2

2 )(1 + 9X
32 + 2X2)L2(X,G14,14,12, St)

Ak
5 (G23,5, g) (1 + 23X

32 − 23X2

32 −X3)L2(2
−12X,G23,5,Sp)L2(2

−13X,G23,5, Sp)

Table 4. Euler 2-factors L2(X,F, St) for F ∈ Sk, k = (14, 14, 14, 14, 14).

From Table 4, it is straightforward to identify the following irreducible factors of L2(X,F, St)
for F ∈ Sk, when considered modulo p:

L2(X,E5,14, St) ≡ (1−X)(2−X)(4−X)(8−X)(11−X)(16−X)

× (22−X)(27−X)(32−X)(35−X)(39−X) mod p,

L2(X, [I2(f)]
k, St) ≡ (1−X)(8−X)(16−X)(27−X)(32−X)(35−X)

× (39−X)(22 + 10X +X2)(2 + 20X +X2) mod p,

L2(X, [M
14
3 (f, g)]k, St) ≡ (1−X)(16−X)(20−X)(28−X)(32−X)(35−X)

× (39−X)(22 + 10X +X2)(2 + 20X +X2) mod p,

L2(X, [M
14
4 (ϕ22, I2(f))]

k, St) ≡ (31−X)(35−X)(61−X)(70−X)(72−X)(79−X)

× (other factors) mod p,

L2(X, [I4(ϕ
+
24)]

k, St) ≡{
(1−X)(32−X)(39−X)× (4 quad. factors) mod p if L2(X,ϕ

+
24) is irreducible mod p

(1−X)(32−X)(39−X)× (8 linear factors) mod p otherwise,
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L2(X, [I4(ϕ
−
24)]

k, St) ≡{
(1−X)(32−X)(39−X)× (4 quad. factors) mod p if L2(X,ϕ

−
24) is irreducible mod p

(1−X)(32−X)(39−X)× (8 linear factors) mod p otherwise,

L2(X,M
k
5 (ϕ20,M

14
3 (f, g)), St) = (1−X)(20−X)(28−X)(22 + 10X +X2)

× (22 + 14X +X2)(2 + 20X +X2)(2 + 28X +X2) mod p,

L2(X,K5(ϕ22, G14,14,12), St) = (5−X)(10−X)(13−X)(26−X)

× (other factors) mod p,

L2(X,A
k
5 (G23,5, g), St) = (1−X)(20−X)(28−X)

× (other factors) mod p.

By comparing the irreducible factors of L2(X, [M
14
3 (f, g)]k, St) with those of F ∈ Sk mod-

ulo p, we can conclude that H = Ak
5 (G23,5, g).

Hence, we have the following theorem.

Theorem 7.3. We have

Ak
5 (G23,5, g) ≡ev [M

14
3 (f, g)]k mod 43.

By Theorem 4.8, we obtain the following:

Corollary 7.4. Conjecture 4.2 holds for (k, j) = (5, 18) with f = ϕ26, F = G23,5 and
p = (43).

Remark 7.5. (1) If we use the Galois representation theoretic method, we can shorten
the verification of non-congruences in Subsections 7.1 and 7.2.

(2) Since we have

L(j/2 + 2,M
k+j/2
3 (f, g), St) = L(j/2 + 2, g, St)L(k + j + 1, f)L(k + j, f),

it is expected that the divisibility of L(j/2 + 2,M
k+j/2
3 (f, g), St) by a prime ideal p

follows from the divisibility of L(k+ j, f) by p. In the Saito-Kurokawa lift case, such
a result was given using the period relation due to Kohnen and Skoruppa [24] (cf. [2,
Proposition 6.12]). However, such a result has not been given in the Miyawaki lift of
type II because we have no such a period relation at present. We note that such a
period relation was conjectured in the case of Miyawaki lift of type I by Ikeda [19].

(3) Harder’s conjecture for (k, j) = (5, 18) has been already proved by Ibukiyama [13]
combined with Ishimoto [20].

(4) To compute (6) using Theorem 6.12, it is necessary to sum over all R ∈M3,5(Z) such
that

(
3B1 R/2
tR/2 A

)
≥ 0. We note that there are 25, 912, 907 matrices R that satisfy this

condition, which indicates the significant computational complexity involved. This
particular computation is the most challenging one discussed in this paper.
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