Difference between revisions of "Seminar : Affine Lie Algebras"

From chlee
Jump to navigation Jump to search
 
(23 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
==topics==
 
==topics==
References are given for each topic. But '''we won't necessarily follow them strictly or cover them all'''.
+
Some references are given for each topic. But '''we won't necessarily follow them strictly or cover them all'''.
 
===introduction (12/3/2015, Chul-hee Lee)===
 
===introduction (12/3/2015, Chul-hee Lee)===
 
* overview
 
* overview
===Kac-Moody algebras===
+
* distribution of the remaining talks
 +
===affine Lie algebras as central extensions of loop algebras (19/3/2015, Peter McNamara)===
 +
* chapter 7 of [Kac 1994]
 +
* chapter 18 of [Carter 2005]
 +
===Kac-Moody algebras (2/4/2015, 16/4/2015, Sean Michael Wilson)===
 
* chapter 1&4 of [Kac 1994]
 
* chapter 1&4 of [Kac 1994]
 
* chapter 14&15 of [Carter 2005]
 
* chapter 14&15 of [Carter 2005]
===affine Lie algebras as central extensions of loop algebras===
+
 
* chapter 7 of [Kac 1994]
+
===Sugawara construction of Virasoro algebra (23/4/2015, Chris Raymond)===
* chapter 18 of [Carter 2005]
 
===Sugawara construction of Virasoro algebra===
 
 
* chapter 12 of [Kac 1994]
 
* chapter 12 of [Kac 1994]
* chapter 15 of [FMS 1999]
+
* chapter 15 of [DFMS 1997]
 
* Bardakci, K., and M. B. Halpern. 2009. ‘The Dual Quark Models’. arXiv:0907.2705 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/0907.2705.
 
* Bardakci, K., and M. B. Halpern. 2009. ‘The Dual Quark Models’. arXiv:0907.2705 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/0907.2705.
===integrable highest weight representations of affine Lie algebras===
+
* Virasoro, M. A. “The Little Story of an Algebra.” In String Theory and Fundamental Interactions, edited by Maurizio Gasperini and Jnan Maharana, 137–44. Lecture Notes in Physics 737. Springer Berlin Heidelberg, 2008. http://link.springer.com/chapter/10.1007/978-3-540-74233-3_6.
 +
 
 +
===integrable highest weight representations of affine Lie algebras (30/4/2015, Inna Lukyanenko)===
 
* chapter 12 of [Kac 1994]
 
* chapter 12 of [Kac 1994]
 
* chapter 3 of [Wakimoto 2001]
 
* chapter 3 of [Wakimoto 2001]
 
* chapter 20 of [Carter 2005]
 
* chapter 20 of [Carter 2005]
===Wess-Zumino-Witten model===
+
===Wess-Zumino-Witten model (7/5/2015, Nathan McMahon)===
* chapter 15 of [FMS 1999]
+
* chapter 15 of [DFMS 1997]
 
* Walton, Mark. ‘Affine Kac-Moody Algebras and the Wess-Zumino-Witten Model’. arXiv:hep-th/9911187, 23 November 1999. http://arxiv.org/abs/hep-th/9911187.
 
* Walton, Mark. ‘Affine Kac-Moody Algebras and the Wess-Zumino-Witten Model’. arXiv:hep-th/9911187, 23 November 1999. http://arxiv.org/abs/hep-th/9911187.
===modular transformations of characters of affine Lie algebras===
+
* Goddard, Peter, and David Olive. “Kac-Moody and Virasoro Algebras in Relation to Quantum Physics.” International Journal of Modern Physics A 01, no. 02 (July 1, 1986): 303–414. doi:[http://dx.doi.org/10.1142/S0217751X86000149 10.1142/S0217751X86000149].
 +
===modular transformations of characters of affine Lie algebras (14/5/2015, 21/5/2015, Alexander Dunn)===
 
* chapter 4 of [Wakimoto 2001]
 
* chapter 4 of [Wakimoto 2001]
 
* chapter 13 of [Kac 1994]
 
* chapter 13 of [Kac 1994]
 
* Macdonald, I. G. 1981. “Affine Lie Algebras and Modular Forms.” In Séminaire Bourbaki Vol. 1980/81 Exposés 561–578, 258–276. Lecture Notes in Mathematics 901. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0097202.
 
* Macdonald, I. G. 1981. “Affine Lie Algebras and Modular Forms.” In Séminaire Bourbaki Vol. 1980/81 Exposés 561–578, 258–276. Lecture Notes in Mathematics 901. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0097202.
===fusion rules and Verlinde formula===
+
 
 +
===fusion rules and Verlinde formula (.)===
 
* chapter 5 of [Wakimoto 2001]
 
* chapter 5 of [Wakimoto 2001]
* chapter 16 of [FMS 1999]
+
* chapter 16 of [DFMS 1997]
 
* Gannon, Terry. 2005. “Modular Data: The Algebraic Combinatorics of Conformal Field Theory.” Journal of Algebraic Combinatorics. An International Journal 22 (2): 211–250. doi:[http://dx.doi.org/10.1007/s10801-005-2514-2 10.1007/s10801-005-2514-2].
 
* Gannon, Terry. 2005. “Modular Data: The Algebraic Combinatorics of Conformal Field Theory.” Journal of Algebraic Combinatorics. An International Journal 22 (2): 211–250. doi:[http://dx.doi.org/10.1007/s10801-005-2514-2 10.1007/s10801-005-2514-2].
 
* Feingold, Alex J. 2004. ‘Fusion Rules for Affine Kac-Moody Algebras’. In Kac-Moody Lie Algebras and Related Topics, 343:53–96. Contemp. Math. Amer. Math. Soc., Providence, RI. http://arxiv.org/abs/math/0212387
 
* Feingold, Alex J. 2004. ‘Fusion Rules for Affine Kac-Moody Algebras’. In Kac-Moody Lie Algebras and Related Topics, 343:53–96. Contemp. Math. Amer. Math. Soc., Providence, RI. http://arxiv.org/abs/math/0212387
 
* Fuchs, J. 1994. ‘Fusion Rules in Conformal Field Theory’. Fortschritte Der Physik/Progress of Physics 42 (1): 1–48. doi:10.1002/prop.2190420102. http://arxiv.org/abs/hep-th/9306162
 
* Fuchs, J. 1994. ‘Fusion Rules in Conformal Field Theory’. Fortschritte Der Physik/Progress of Physics 42 (1): 1–48. doi:10.1002/prop.2190420102. http://arxiv.org/abs/hep-th/9306162
 
* Verlinde, Erik. 1988. “Fusion Rules and Modular Transformations in 2D Conformal Field Theory.” Nuclear Physics B 300: 360–376. doi:[http://dx.doi.org/10.1016/0550-3213(88)90603-7 10.1016/0550-3213(88)90603-7].
 
* Verlinde, Erik. 1988. “Fusion Rules and Modular Transformations in 2D Conformal Field Theory.” Nuclear Physics B 300: 360–376. doi:[http://dx.doi.org/10.1016/0550-3213(88)90603-7 10.1016/0550-3213(88)90603-7].
===vertex operator constructions of basic representations===
+
===vertex operator constructions of basic representations (Masoud Kamgarpour)===
 
* chapter 14 of [Kac 1994]
 
* chapter 14 of [Kac 1994]
 
* chapter 20 of [Carter 2005]
 
* chapter 20 of [Carter 2005]
Line 49: Line 55:
 
==references==
 
==references==
 
<HarvardReferences>
 
<HarvardReferences>
* [*Kac 1994] Kac, Victor G. 1994. Infinite-Dimensional Lie Algebras. Cambridge University Press.
+
* [*Kac 1994] Kac, Victor G. Infinite-Dimensional Lie Algebras. Third. Cambridge University Press, Cambridge, 1990. http://www.ams.org/mathscinet-getitem?mr=1104219.
* [*FMS 1999] Francesco, Philippe, Pierre Mathieu, and David Senechal. 1999. Conformal Field Theory. Corrected edition. New York: Springer.
+
* [*DFMS 1997] Di Francesco, Philippe, Pierre Mathieu, and David Sénéchal. Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997. http://www.ams.org/mathscinet-getitem?mr=1424041.
 
* [*Wakimoto 2001] Wakimoto, Minoru. Infinite-Dimensional Lie Algebras. Vol. 195. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2001. http://www.ams.org/mathscinet-getitem?mr=1793723.
 
* [*Wakimoto 2001] Wakimoto, Minoru. Infinite-Dimensional Lie Algebras. Vol. 195. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2001. http://www.ams.org/mathscinet-getitem?mr=1793723.
 
* [*Carter 2005] Carter, R. W. 2005. Lie Algebras of Finite and Affine Type. Vol. 96. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. http://www.ams.org/mathscinet-getitem?mr=2188930.
 
* [*Carter 2005] Carter, R. W. 2005. Lie Algebras of Finite and Affine Type. Vol. 96. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. http://www.ams.org/mathscinet-getitem?mr=2188930.
Line 59: Line 65:
 
* Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:[http://link.springer.com/article/10.1007%2FBF03025312 10.1007/BF03025312].
 
* Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:[http://link.springer.com/article/10.1007%2FBF03025312 10.1007/BF03025312].
 
* Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf
 
* Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf
 
+
* O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:[http://dx.doi.org/10.1142/S0217979299002824 10.1142/S0217979299002824].
===advanced===
+
===advanced reading===
 
* Goddard, Peter, and David Olive, eds. Kac-Moody and Virasoro Algebras. Vol. 3. Advanced Series in Mathematical Physics. World Scientific Publishing Co., Singapore, 1988. http://www.ams.org/mathscinet-getitem?mr=966668.
 
* Goddard, Peter, and David Olive, eds. Kac-Moody and Virasoro Algebras. Vol. 3. Advanced Series in Mathematical Physics. World Scientific Publishing Co., Singapore, 1988. http://www.ams.org/mathscinet-getitem?mr=966668.
* Frenkel, Igor, James Lepowsky, and Arne Meurman. Vertex Operator Algebras and the Monster. Academic Press, 1989.
+
* Frenkel, Igor, James Lepowsky, and Arne Meurman. Vertex Operator Algebras and the Monster. Vol. 134. Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988. http://www.ams.org/mathscinet-getitem?mr=996026.
 
 
  
 
[[category:Seminar]]
 
[[category:Seminar]]

Latest revision as of 00:14, 15 May 2015

This is the page for the seminar on QFT at the University of Queensland. We focus on Affine Lie Algebras for Semester 1, 2015. The main goal is to understand various aspects of the theory of affine Lie algebras in mathematics and physics.

  • when : Thursdays 3-4:30 pm
  • where : Priestly Building Seminar Room 67-442


topics

Some references are given for each topic. But we won't necessarily follow them strictly or cover them all.

introduction (12/3/2015, Chul-hee Lee)

  • overview
  • distribution of the remaining talks

affine Lie algebras as central extensions of loop algebras (19/3/2015, Peter McNamara)

  • chapter 7 of [Kac 1994]
  • chapter 18 of [Carter 2005]

Kac-Moody algebras (2/4/2015, 16/4/2015, Sean Michael Wilson)

  • chapter 1&4 of [Kac 1994]
  • chapter 14&15 of [Carter 2005]

Sugawara construction of Virasoro algebra (23/4/2015, Chris Raymond)

  • chapter 12 of [Kac 1994]
  • chapter 15 of [DFMS 1997]
  • Bardakci, K., and M. B. Halpern. 2009. ‘The Dual Quark Models’. arXiv:0907.2705 [hep-Th, Physics:math-Ph], July. http://arxiv.org/abs/0907.2705.
  • Virasoro, M. A. “The Little Story of an Algebra.” In String Theory and Fundamental Interactions, edited by Maurizio Gasperini and Jnan Maharana, 137–44. Lecture Notes in Physics 737. Springer Berlin Heidelberg, 2008. http://link.springer.com/chapter/10.1007/978-3-540-74233-3_6.

integrable highest weight representations of affine Lie algebras (30/4/2015, Inna Lukyanenko)

  • chapter 12 of [Kac 1994]
  • chapter 3 of [Wakimoto 2001]
  • chapter 20 of [Carter 2005]

Wess-Zumino-Witten model (7/5/2015, Nathan McMahon)

  • chapter 15 of [DFMS 1997]
  • Walton, Mark. ‘Affine Kac-Moody Algebras and the Wess-Zumino-Witten Model’. arXiv:hep-th/9911187, 23 November 1999. http://arxiv.org/abs/hep-th/9911187.
  • Goddard, Peter, and David Olive. “Kac-Moody and Virasoro Algebras in Relation to Quantum Physics.” International Journal of Modern Physics A 01, no. 02 (July 1, 1986): 303–414. doi:10.1142/S0217751X86000149.

modular transformations of characters of affine Lie algebras (14/5/2015, 21/5/2015, Alexander Dunn)

  • chapter 4 of [Wakimoto 2001]
  • chapter 13 of [Kac 1994]
  • Macdonald, I. G. 1981. “Affine Lie Algebras and Modular Forms.” In Séminaire Bourbaki Vol. 1980/81 Exposés 561–578, 258–276. Lecture Notes in Mathematics 901. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0097202.

fusion rules and Verlinde formula (.)

  • chapter 5 of [Wakimoto 2001]
  • chapter 16 of [DFMS 1997]
  • Gannon, Terry. 2005. “Modular Data: The Algebraic Combinatorics of Conformal Field Theory.” Journal of Algebraic Combinatorics. An International Journal 22 (2): 211–250. doi:10.1007/s10801-005-2514-2.
  • Feingold, Alex J. 2004. ‘Fusion Rules for Affine Kac-Moody Algebras’. In Kac-Moody Lie Algebras and Related Topics, 343:53–96. Contemp. Math. Amer. Math. Soc., Providence, RI. http://arxiv.org/abs/math/0212387
  • Fuchs, J. 1994. ‘Fusion Rules in Conformal Field Theory’. Fortschritte Der Physik/Progress of Physics 42 (1): 1–48. doi:10.1002/prop.2190420102. http://arxiv.org/abs/hep-th/9306162
  • Verlinde, Erik. 1988. “Fusion Rules and Modular Transformations in 2D Conformal Field Theory.” Nuclear Physics B 300: 360–376. doi:10.1016/0550-3213(88)90603-7.

vertex operator constructions of basic representations (Masoud Kamgarpour)

  • chapter 14 of [Kac 1994]
  • chapter 20 of [Carter 2005]
  • Frenkel, I. B., and V. G. Kac. “Basic Representations of Affine Lie Algebras and Dual Resonance Models.” Inventiones Mathematicae 62, no. 1 (February 1, 1980): 23–66. doi:10.1007/BF01391662.
  • Lepowsky, James, and Robert Lee Wilson. “Construction of the Affine Lie algebra $A_1^{(1)}$.” Communications in Mathematical Physics 62, no. 1 (1 August 1978): 43–53. doi:10.1007/BF01940329.

links


references

<HarvardReferences>

</HarvardReferences>

reading for fun

  • Helgason, Sigurdur. ‘A Centennial: Wilhelm Killing and the Exceptional Groups’. The Mathematical Intelligencer 12 (3): 54–57. doi:10.1007/BF03024019.
  • Coleman, A. J. ‘The Greatest Mathematical Paper of All Time’. The Mathematical Intelligencer 11 (3): 29–38. doi:10.1007/BF03025189.
  • Berman, Stephen, and Karen Hunger Parshall. ‘Victor Kac and Robert Moody: Their Paths to Kac-Moody Lie Algebras’. The Mathematical Intelligencer 24, no. 1 (13 January 2009): 50–60. doi:10.1007/BF03025312.
  • Dolan, Louise. ‘The Beacon of Kac-Moody Symmetry for Physics’. Notices of the American Mathematical Society 42, no. 12 (1995): 1489–95. http://www.ams.org/notices/199512/dolan.pdf
  • O’Raifeartaigh, L. ‘The Intertwining of Affine Kac–moody and Current Algebras’. International Journal of Modern Physics B 13, no. 24n25 (10 October 1999): 3009–20. doi:10.1142/S0217979299002824.

advanced reading